Open Access
Issue
E3S Web Conf.
Volume 619, 2025
3rd International Conference on Sustainable Green Energy Technologies (ICSGET 2025)
Article Number 05008
Number of page(s) 13
Section Nanotechnology Innovations in Energy, Environment, and Healthcare
DOI https://doi.org/10.1051/e3sconf/202561905008
Published online 12 March 2025
  1. H. Benzenine, R. Saim, S. Abboudi, O. Imine, Convective thermal analysis of a turbulent flow in a pipe with two and three corrugated baffles arranged in overlap. American Journal of Heat and Mass Transfer. 3, 382 (2016). [Google Scholar]
  2. R. Girimurugan, P. Selvaraju, P. Jeevanandam, M. Vadivukarassi, S. Subhashini, N. Selvam, S. K. Ahammad, S. Mayakannan, S. K. Vaithilingam, Application of Deep Learning to the Prediction of Solar Irradiance through Missing Data. International Journal of Photoenergy. 2023, (2023). [CrossRef] [Google Scholar]
  3. R. Barzegarian, A. Aloueyan, T. Yousefi, Thermal performance augmentation using water based Al2O3-gamma nanofluid in a horizontal shell and tube heat exchanger under forced circulation. International Communications in Heat and Mass Transfer. 86, 52 (2017). [CrossRef] [Google Scholar]
  4. B. Karthikeyan, G. Praveen Kumar, R. Saravanan, Alberto Coronas, Ramadas Narayanan, R. Girimurugan, Solar powered cascade system for sustainable deep- freezing and power generation - exergoeconomic evaluation and multi-objective optimization for tropical regions. Thermal Science and Engineering Progress. 102552 (2024). [Google Scholar]
  5. K. Wang, Q. Zhang, P. Wu, L. Liu, Numerical study of flow and heat transfer characteristics in shell-and-plate heat exchangers. Heat Transfer Research. 53, 99 (2022). [CrossRef] [Google Scholar]
  6. A. M. Abed, H. S. Majdi, Z. Hussein, D. Fadhil, A. Abdulkadhim, Numerical analysis of flow and heat transfer enhancement in a horizontal pipe with P-TT and V-Cut twisted tape. Case studies in thermal engineering. 12, 749 (2018). [CrossRef] [Google Scholar]
  7. A. M. Hassaan, an investigation for the performance of the using of nanofluids in shell and tube heat exchanger. International Journal of Thermal Sciences. 177, 107569 (2022). [CrossRef] [Google Scholar]
  8. G. D. Chen, M. Zeng, Q. Wang, Experimental and numerical studies on shell-side performance of three different shell-and-tube heat exchangers with helical baffles. Journal of Enhanced Heat Transfer. 18, 449 (2011). [CrossRef] [Google Scholar]
  9. S. Eswaran, M. Chandru, M. Vairavel, R. Girimurugan, Numerical Study on Solar Water Heater using CFD Analysis. International Journal of Engineering Sciences & Research Technology. 3, 1485 (2014). [Google Scholar]
  10. M. R. Safaei, M. A. Alazwari, Combination effect of baffle arrangement and hybrid nanofluid on thermal performance of a shell and tube heat exchanger using 3-d homogeneous mixture model. Mathematics. 9, (2021). [Google Scholar]
  11. Prasanth Ponnusamy, S Seenivasan, G Ravivarman, K Sathiyasekar, Ramasamy Girimurugan, Experimental Analysis of Phase Change Materials Supported with Hemp- Stem-Derived Biochar for Enhanced Solar-Thermal Energy Conversion and Storage. IGI Global. 177 (2024). [Google Scholar]
  12. A. M. Hassaan, Comparing the Performance of Using Nanofluids in Two Different Types of Heat Exchangers with the Same Heat Transfer Area. Heat Transf Res. 54, 1 (2023). [CrossRef] [Google Scholar]
  13. K Kannakumar, A Murugesan, S Balasubramani, Ramasamy Girimurugan, Achintya Sharma, Enhancing Desalination and Liquid Desiccant Regeneration Efficiency Through a Hybrid Solar Still: A Comparative Study with Steel Scrap Thermal Storage. IGI Global. 133 (2024). [Google Scholar]
  14. R. A. Mezrakchi, Investigation of various hybrid nanofluids to enhance the performance of a shell and tube heat exchanger. AIMS Energy. 12, 235 (2024). [CrossRef] [Google Scholar]
  15. Manoj Kumar Shanmugam, S Sathishkumar, GB Mohankumar, Ramasamy Girimurugan, Achintya Sharma, Improving Solar Still Performance with Porites Coral Biomaterial: A Comparative Study on Enhanced Efficiency. IGI Global. 283 (2024). [Google Scholar]
  16. M. Ünverdi, H. Kücük, M. S. Yilmaz, Experimental investigation of heat transfer and pressure drop in a mini-channel shell and tube heat exchanger. Heat and Mass Transfer. 55, 1271 (2019). [CrossRef] [Google Scholar]
  17. R. Jiang, M. Yang, S. Chen, S. M. Huang, X. Yang, Fluid flow and heat transfer across an elliptical hollow fiber membrane tube bank with randomly distributed features. International Journal of Heat and Mass Transfer. 76, 559 (2014). [CrossRef] [Google Scholar]
  18. S. Mazdak, G. A. Sheikhzadeh, A. Fattahi, Numerical analysis of a heat exchanger with curved segmental baffle and Cassini oval cross-section tubes in various bundle arrangements. J Therm Anal Calorim. 148, 8459 (2023). [CrossRef] [Google Scholar]
  19. R. Amalia, A. G. Safitra, H. Ubudiyah, Numerical Study on Heat Transfer and Friction Factor Characteristics of Transition Flow in Shell and Tube Heat Exchanger. International Electronics Symposium: The Role of Techno-Intelligence in Creating an Open Energy System Towards Energy Democracy. 283 (2019). [Google Scholar]
  20. Z. Ahčin, J. Liang, K. Engelbrecht, J. Tušek, Thermo-hydraulic evaluation of oscillating- flow shell-and-tube-like regenerators for (elasto) caloric cooling. Applied Thermal Engineering. 190, 116842 (2021). [CrossRef] [Google Scholar]
  21. M. P. S. Bharadwaj, S. Sudhakar Babu, Heat transfer enhancement in 25-2t shell and tube heat exchanger with wire coil and twisted tape turbulators using t102 nanofluid. International Journal of Mechanical Engineering and Technology. 8, 846 (2017). [Google Scholar]
  22. H. H. M. Ali, A. M. Hussein, K. M. H. Allami, B. Mohamad, Evaluation of Shell and Tube Heat Exchanger Performance by Using ZnO / Water Nanofluids. Journal of Harbin Institute of Technology (New Series). 30, 62 (2023). [Google Scholar]
  23. M. Prończuk, A. Krzanowska, Experimental Investigation of the Heat Transfer and Pressure Drop inside Tubes and the Shell of a Minichannel Shell and Tube Type Heat Exchanger. Energies (Basel). 14, (2021). [Google Scholar]
  24. R. R. Sahoo, J. Sarkar, Experimental study on hydrothermal characteristics of shell and tube heat exchanger using phase change material-based hybrid nanofluid. Heat and Mass Transfer/Waerme- und Stoffuebertragung. 60, 519 (2024). [CrossRef] [Google Scholar]
  25. Krishnamoorthy, Murugaperumal, P. Ajay-D-Vimal Raj, N. P. Subramaniam, M. Sudhakaran, and Arulselvi Ramasamy. “Design and development of optimal and deep- learning-based demand response technologies for residential hybrid Renewable Energy Management System.” Sustainability 15, no. 18 (2023): 13773. [CrossRef] [Google Scholar]
  26. S. Shankar, M. Manikandan, G. Raja, G. S. Priyadharashini, A. Pramanik, Experimental studies on viscosity, thermal and tribological properties of vegetable oil (kapok oil) with boric acid as an additive. Micro & Nano Letters. 16, 290 (2021). [CrossRef] [Google Scholar]
  27. A. A. Ganguli, A. B. Pandit, Computational fluid dynamics simulations to improve performance characteristics of a manifold having a central inlet and outlet. Front Energy Res. 10, 1013540 (2022). [CrossRef] [Google Scholar]
  28. M. Bahiraei, S. M. Hosseinalipour, M. Saeedan, Prediction of Nusselt number and friction factor of water-Al2O3 nanofluid flow in shell-and-tube heat exchanger with helical baffles. Chemical Engineering Communications. 202, 260 (2015). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.