Open Access
Issue
E3S Web Conf.
Volume 620, 2025
2024 12th International Conference on Environment Pollution and Prevention (ICEPP 2024)
Article Number 03001
Number of page(s) 15
Section Thermal Environment Analysis in Buildings
DOI https://doi.org/10.1051/e3sconf/202562003001
Published online 12 March 2025
  1. Chen, H.-P., Liao, H.-J., Huang, C.-M., & Yu, S.-N. (2010). Improving liquid chromatography-tandem mass spectrometry determinations by modifying noise frequency spectrum between two consecutive wavelet-based low-pass filtering procedures. Journal of Chromatography A, 1217(17), 2804–2811. [CrossRef] [PubMed] [Google Scholar]
  2. Donateo, A., Cava, D., & Contini, D. (2017). A case study of the performance of different detrending methods in turbulent-flux estimation. Boundary-Layer Meteorology, 164(1), 19–37. [CrossRef] [Google Scholar]
  3. Gilles, J. (2013). Empirical Wavelet Transform. IEEE Transactions on Signal Processing, 61(16), 3999–4010. [CrossRef] [Google Scholar]
  4. Goldbach, A., & Kuttler, W. (2013). Quantification of turbulent heat fluxes for adaptation strategies within urban planning. International Journal of Climatology, 33(10), 2340–2348. [Google Scholar]
  5. Hotra, O., Kovtun, S., Dekusha, O., Gradz, Z., Babak, V., & Styczen, J. (2022). Analysis of Low-Density Heat Flux Data by the Wavelet Method. Energies. [Google Scholar]
  6. Li, H., Zhou, Y., Wang, X., Zhou, X., Zhang, H., & Sodoudi, S. (2019). Quantifying urban heat island intensity and its physical mechanism using WRF/UCM. The Science of the Total Environment, 650 Pt 2, 3110–3119 [CrossRef] [PubMed] [Google Scholar]
  7. Metzger, S., Junkermann, W., Mauder, M., Butterbach-Bahl, K., Widemann, B. T., Neidl, F., Schäfer, K., Wieneke, S., Zheng, X., Schmid, H., & Foken, T. (2013). Spatially explicit regionalization of airborne flux measurements using environmental response functions. Biogeosciences, 10(4), 2193–2217. [CrossRef] [Google Scholar]
  8. Nazari, M., Farahani, S. D., & Kowsary, F. (2012). Comparison of the Mollification and Wavelet Prefiltering of Temperature Data in an Ill-Posed Inverse Heat Conduction Problem, Application: Nonthermal Equilibrium Porous Medium. Heat Transfer Engineering, 33(8), 704–711 [CrossRef] [Google Scholar]
  9. Onderka, M., Banzhaf, S., Scheytt, T., & Krein, A. (2013). Seepage velocities derived from thermal records using wavelet analysis. Journal of Hydrology, 479, 64–74. [CrossRef] [Google Scholar]
  10. Pérez-Priego, Ó., El-Madany, T., Migliavacca, M., Kowalski, A., Jung, M., Carrara, A., Kolle, O., Martín, M., Pacheco-Labrador, J., Moreno, G., & Reichstein, M. (2017). Evaluation of eddy covariance latent heat fluxes with independent lysimeter and sapflow estimates in a Mediterranean savannah ecosystem. Agricultural and Forest Meteorology, 236, 87–99. [CrossRef] [Google Scholar]
  11. Sang, Y. (2013). A review on the applications of wavelet transform in hydrology time series analysis. Atmospheric Research, 122, 8–15 [CrossRef] [Google Scholar]
  12. Sun, T., Wang, Z., Oechel, W., & Grimmond, S. (2017). The Analytical Objective Hysteresis Model (AnOHM v1.0): methodology to determine bulk storage heat flux coefficients. Geoscientific Model Development, 10(8), 2875–2890. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.