Open Access
Issue |
E3S Web Conf.
Volume 621, 2025
Second International Conference on Green Energy, Environmental Engineering and Sustainable Technologies 2024 (ICGEST 2024)
|
|
---|---|---|
Article Number | 02009 | |
Number of page(s) | 11 | |
Section | Green Sustainable Process for Chemical and Biological Science | |
DOI | https://doi.org/10.1051/e3sconf/202562102009 | |
Published online | 19 March 2025 |
- Allawi, A. H., Alheety, M. A., & Mohammed, M. Y. (2022). Ultrasound assisted synthesis of attapulgite-PdO nanocomposite using palladium complex for hydrogen storage: Kinetic studies. Inorganic Chemistry Communications, 143, 109787. [CrossRef] [Google Scholar]
- Alheety, M. A., Majeed, A. H., Ali, A. H., Mohammed, L. A., Destagul, A., & Singh, P. K. (2022). Synthesis and characterization of eggshell membrane polymer-TiO2 nanocomposite for newly synthesized ionic liquid release. Journal of the Iranian Chemical Society, 19(9), 4005-4015. [CrossRef] [Google Scholar]
- Alheety, N. F., Mohammed, L. A., Majeed, A. H., Sehgal, S., Aldahham, B. J., & Alheety, M. A. (2022). The effect of addition Ag and MnO2 nanoparticles in the hydrogen storage of ethyl 2-((5-methoxybenzo [d] thiazol-2-yl) thio) acetate (organic: Inorganic nanohybrids). Journal of the Indian Chemical Society, 99(10), 100734. [CrossRef] [Google Scholar]
- Alheety, N. F., Mohammed, L. A., Majeed, A. H., Sehgal, S., Aldahham, B. J., & Alheety, M. A. (2022). The effect of addition Ag and MnO2 nanoparticles in the hydrogen storage of ethyl 2-((5-methoxybenzo [d] thiazol-2-yl) thio) acetate (organic: Inorganic nanohybrids). Journal of the Indian Chemical Society, 99(10), 100734. [CrossRef] [Google Scholar]
- Mohammed, L. A., Majeed, A. H., Hammoodi, O. G., Prakash, C., Alheety, M. A., Buddhi, D., ... & Mohammed, I. K. (2022). Design and characterization of novel ternary nanocomposite (rGO-MnO2-PoPDA) product and screening its dielectric properties. International Journal on Interactive Design and Manufacturing (IJIDeM), 1-15. [Google Scholar]
- Coucouvanis, D. The chemistry of the dithioacid and 1,1-dithiolate complexes. In Progress in Inorganic Chemistry; Lippard, S.J., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 1970; Volume 11, pp. 234–371. [Google Scholar]
- Eisenberg, R. Structural systematics of 1,1- and 1,2-dithiolato chelates. In Progress in Inorganic Chemistry; Lippard, S.J., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 1970; Volume 12, pp. 295–369. [Google Scholar]
- Coucouvanis, D. The chemistry of the dithioacid and 1,1-dithiolate complexes, 1968– 1977. In Progress in Inorganic Chemistry; Lippard, S.J., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 1979; Volume 26, pp. 301–469. [Google Scholar]
- Hogarth, G. Transition metal dithiocarbamates: 1978–2003. In Progress in Inorganic Chemistry; Karlin, K.D., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2005; Volume 53, pp. 71–561. [Google Scholar]
- Heard, P.J. Main group dithiocarbamate complexes. In Progress in Inorganic Chemistry; Karlin, K.D., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2005; Volume 53, pp. 1–69. [Google Scholar]
- Tiekink, E.R.T. Aggregation patterns in the crystal structures of organometallic Group XV 1,1-dithiolates: The influence of the Lewis acidity of the central atom, metal- and ligand-bound steric bulk, and coordination potential of the 1,1-dithiolate ligands upon supramolecular architecture. CrystEngComm 2006, 8, 104–118. [Google Scholar]
- Tiekink, E.R.T.; Zukerman-Schpector, J. Stereochemical activity of lone pairs of electrons and supramolecular aggregation patterns based on secondary interactions involving tellurium in its 1,1-dithiolate structures. Coord. Chem. Rev. 2010, 254, 46–76. [Google Scholar]
- Tiekink, E.R.T. Exploring the topological landscape exhibited by binary zinc-triad 1,1-dithiolates. Crystals 2018, 8, 292. [Google Scholar]
- Tiekink, E.R.T. Perplexing coordination behaviour of potentially bridging bipyridyl-type ligands in the coordination chemistry of zinc and cadmium 1,1-dithiolate compounds. Crystals 2018, 8, 18. [Google Scholar]
- Lee, S.M.; Tiekink, E.R.T. A structural survey of poly-functional dithiocarbamate ligands and the aggregation patterns they sustain. Inorganics 2021, 9, 7. [CrossRef] [Google Scholar]
- Tiekink, E.R.T. On the coordination role of pyridyl-nitrogen in the structural chemistry of pyridyl-substituted dithiocarbamate ligands. Crystals 2021, 11, 286. [Google Scholar]
- Poirier, S.; Lynn, H.; Reber, C.; Tailleur, E.; Marchivie, M.; Guionneau, P.; Probert, M.R. Variation of M···H–C interactions in square-planar complexes of nickel(II), palladium(II), and platinum(II) probed by luminescence spectroscopy and X-ray diffraction at variable pressure. Inorg. Chem. 2018, 57, 7713–7723. [CrossRef] [PubMed] [Google Scholar]
- Poirier, S.; Guionneau, P.; Luneau, D.; Reber, C. Why do the luminescence maxima of isostructural palladium(II) and platinum(II) complexes shift in opposite directions? Can. J. Chem. 2014, 92, 958–965. [Google Scholar]
- Ferreira, I.P.; de Lima, G.M.; Paniago, E.B.; Takahashi, J.A.; Pinheiro, C.B. Synthesis, characterization and antifungal activity of new dithiocarbamate-based complexes of Ni(II), Pd(II) and Pt(II). Inorg. Chim. Acta 2014, 423, 443–449. [CrossRef] [Google Scholar]
- Knight, E.R.; Leung, N.H.; Lin, Y.H.; Cowley, A.R.; Watkin, D.J.; Thompson, A.L.; Hogarth, G.; Wilton-Ely, J.D.E.T. Multimetallic arrays: Symmetrical bi-, tri- and tetrametallic complexes based on the group 10 metals and the functionalisation of gold nanoparticles with nickel-phosphine surface units. Dalton Trans. 2009, 3688–3697. [Google Scholar]
- Scott, J.A.; Angeloski, A.; Aharonovich, I.; Lobo, C.J.; McDonagh, A.; Toth, M. In situ study of the precursor conversion reactions during solventless synthesis of Co9S8, Ni3S2, Co and Ni nanowires. Nanoscale 2018, 10, 15669–15676. [PubMed] [Google Scholar]
- Roffey, A.; Hollingsworth, N.; Islam, H.U.; Mercy, M.; Sankar, G.; Catlow, C.R.; Hogarth, G.; de Leeuw, N.H. Phase control during the synthesis of nickel sulfide nanoparticles from dithiocarbamate precursors. Nanoscale 2016, 8, 11067–11075. [PubMed] [Google Scholar]
- Breviglieri, S.T.; Cavalheiro, É.T.G.; Chierice, G.O. Correlation between ionic radius and thermal decomposition of Fe(II), Co(II), Ni(II), Cu(II) and Zn(II) diethanoldithiocarbamates. Thermochim. Acta 2000, 356, 79–84. [Google Scholar]
- Doherty, R. E., Sazanovich, I. V., McKenzie, L. K., Stasheuski, A. S., Coyle, R., Baggaley, E., ... & Bryant, H. E. (2016). Photodynamic killing of cancer cells by a Platinum (II) complex with cyclometallating ligand. Scientific reports, 6(1), 1-9. [CrossRef] [Google Scholar]
- Francos, J., & Cadierno, V. (2019). The chemistry of guanidinate complexes of the platinum group metals. Dalton Transactions, 48(25), 9021-9036. [Google Scholar]
- Mohammad, E. T. (2018). University of Mosul. [Google Scholar]
- Nakamoto, K., Fujita, J., Condrate, R. A., & Morimoto, Y. (1963). Infrared spectra of metal chelate compounds. IX. A normal coordinate analysis of dithiocarbamato complexes. The Journal of Chemical Physics, 39(2), 423-427. [Google Scholar]
- Beć, K. B., & Grabska, J. (2018). Quantum mechanical simulations of near-infrared spectra of biomolecules–Long-chain fatty acids. NIR news, 29(6), 13-19. [Google Scholar]
- Preti, C., Tosi, G., De Filippo, D., & Verani, G. (1974). Group IIB metal complexes with thiazolidine-2-selenone and thiazolidine-2-one as ligands. Journal of Inorganic and Nuclear Chemistry, 36(12), 3725-3729. [CrossRef] [Google Scholar]
- Balan, V., Mihai, C. T., Cojocaru, F. D., Uritu, C. M., Dodi, G., Botezat, D., & Gardikiotis, I. (2019). Vibrational spectroscopy fingerprinting in medicine: from molecular to clinical practice. Materials, 12(18), 2884. [PubMed] [Google Scholar]
- Gurumoorthy, G., Thirumaran, S., & Ciattini, S. (2016). Unusual octahedral Hg (II) dithiocarbamate: Synthesis, spectral and structural studies on Hg (II) complexes with pyrrole based dithiocarbamates and their utility for the preparation of α-and βHgS. Polyhedron, 118, 143-153. [Google Scholar]
- Andrew, F. P., & Ajibade, P. A. (2018). Metal complexes of alkyl-aryl dithiocarbamates: Structural studies, anticancer potentials and applications as precursors for semiconductor nanocrystals. Journal of Molecular Structure, 1155, 843-855. [CrossRef] [Google Scholar]
- Toscani, A., Heliövaara, E. K., Hena, J. B., White, A. J., Wilton-Ely, J. D. (2015). Multimetallic alkenyl complexes bearing macrocyclic dithiocarbamate ligands. Organometallics, 34(2), 494-505. [CrossRef] [Google Scholar]
- Gumber, K., Sidhu, A., & Kocher, D. K. (2017). Synthesis of novel 1, 2, 4-triazole-DTC based metallo-phosphorous nanoformulations as larvicide against Aedes aegypti. Int Res J Pure Appl Chem, 14(1), 1-12. [Google Scholar]
- Almabhouh, F. A., Muhammad, F. I. A., Ibrahim, H., & Singh, H. (2019). Leptin: A pleitropic factor in physiology. Journal of Clinical and Health Sciences, 4(2), 31-57. [CrossRef] [Google Scholar]
- Al-Jibori, S. A., Ulghafoor, M. A., Karadağ, A., Aydın, A., Akbaş, H., Ruiz, S. G. (2019). Synthesis, characterization and anti-tumor activity of Pd (II) complexes with 4, 5-benzo-3H-1, 2-dithiole-3-thione. Transition Metal Chemistry, 44, 575-583. [Google Scholar]
- Aygun, A., Gülbagca, F., Ozer, L. Y., Ustaoglu, B., Altunoglu, Y. C., Baloglu, M. C., Sen, F. (2020). Biogenic platinum nanoparticles using black cumin seed and their potential usage as antimicrobial and anticancer agent. Journal of pharmaceutical and biomedical analysis, 179, 112961. [CrossRef] [PubMed] [Google Scholar]
- Eris, S., Daşdelen, Z., & Sen, F. (2018). Enhanced electrocatalytic activity and stability of monodisperse Pt nanocomposites for direct methanol fuel cells. Journal of colloid and interface science, 513, 767-773. [CrossRef] [PubMed] [Google Scholar]
- Nagao, H., Ichiji, M., & Hirasawa, I. (2017). Synthesis of platinum nanoparticles by reductive crystallization using polyethyleneimine. Chemical Engineering & Technology, 40(7), 1242-1246. [Google Scholar]
- Tian, N., Zhou, Z. Y., Sun, S. G., Ding, Y., & Wang, Z. L. (2007). Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. science, 316(5825), 732-735. [Google Scholar]
- Domínguez-Domínguez, S., Arias-Pardilla, J., Berenguer-Murcia, Á., Morallón, E., & Cazorla-Amorós, D. (2008). Electrochemical deposition of platinum nanoparticles on different carbon supports and conducting polymers. Journal of Applied Electrochemistry, 38, 259-268. [Google Scholar]
- Alshatwi, A. A., Athinarayanan, J., & Vaiyapuri Subbarayan, P. (2015). Green synthesis of platinum nanoparticles that induce cell death and G2/M-phase cell cycle arrest in human cervical cancer cells. Journal of Materials Science: Materials in Medicine, 26, 1-9. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.