Open Access
Issue
E3S Web Conf.
Volume 621, 2025
Second International Conference on Green Energy, Environmental Engineering and Sustainable Technologies 2024 (ICGEST 2024)
Article Number 03018
Number of page(s) 15
Section Sustainable Technology for Environmental Protection
DOI https://doi.org/10.1051/e3sconf/202562103018
Published online 19 March 2025
  1. H. Joosten, D. Clarke, Wise use of mires and peatlands (International Mire Conservation Group and International Peat Society, 2002), 304. [Google Scholar]
  2. S. E. Page, J. O. Rieley, C. J. Banks, Global and regional importance of the tropical peatland carbon pool, Global Change Biology, 17(2), 798-818 (2011). [Google Scholar]
  3. J. Leifeld, L. Menichetti, The underappreciated potential of peatlands in global climate change mitigation strategies, Nature Communications, 9 (1), 1071 (2018). [Google Scholar]
  4. M. R. Turetsky, B. Benscoter, S. Page, G. Rein, G. R. Van Der Werf, A. Watts, Global vulnerability of peatlands to fire and carbon loss, Nature Geoscience, 8 (1), 11-14 (2015). [Google Scholar]
  5. W. Moomaw, G. Chmura, G. Davies, C. Finlayson, B. Middleton, S. Natali, J. Perry, N. Roulet, A. Sutton‐Grier, Wetlands in a changing climate: Science, policy and management, Wetlands, 38, 183-205 (2018). [Google Scholar]
  6. S. Frolking, N. Roulet, J. Fuglestvedt, How northern peatlands influence the Earth’s radiative budget: Sustained methane emission versus sustained carbon sequestration, Journal of Geophysical Research: Biogeosciences, 111 (G1) (2006). [Google Scholar]
  7. Z. Liu, Comparative study on poverty reduction strategies in the context of ecological sustainability, in Proceedings of the 2023 2nd International Conference on Economics, Smart Finance and Contemporary Trade (ESFCT 2023), Atlantis Press, pp. 202-213 (2023). [Google Scholar]
  8. A. Hooijer, S. Page, J. G. Canadell, M. Silvius, J. Kwadijk, H. Wösten, J. Jauhiainen, Current and future CO2 emissions from drained peatlands in Southeast Asia, Biogeosciences, 7 (5), 1505-1514 (2010). [Google Scholar]
  9. D. Christen, M. Espinosa, A. Reumann, J. Puri, Results based payments for REDD+ under the Green Climate Fund: Lessons learned on social, environmental and governance safeguards, Forests (2020). [Google Scholar]
  10. T. A. West, J. Börner, P. M. Fearnside, Climatic benefits from the 2006–2017 avoided deforestation in Amazonian Brazil, Frontiers in Forests and Global Change, 2, 52 (2019). [CrossRef] [Google Scholar]
  11. D. C. Donato, J. B. Kauffman, D. Murdiyarso, S. Kurnianto, M. Stidham, M. Kanninen, Mangroves among the most carbon-rich forests in the tropics, Nature Geoscience, 4 (5), 293-297 (2011). [CrossRef] [Google Scholar]
  12. S. Muslikah, I. Yuliana, Karakteristik sifat fisik tanah gambut Ogan Komering Ilir, Cantilever: Jurnal Penelitian dan Kajian Bidang Teknik Sipil, 10 (2), 79-84 (2021). [Google Scholar]
  13. A. Cuni-Sanchez, M. J. Sullivan, P. J. Platts, S. L. Lewis, R. Marchant, G. Imani, E. Zibera, High aboveground carbon stock of African tropical montane forests, Nature, 596 (7873), 536-542 (2021). [Google Scholar]
  14. L. Bremer, K. Farley, O. Chadwick, C. Harden, Changes in carbon storage with land management promoted by payment for ecosystem services, Environmental Conservation, 43, 397-406 (2016). [Google Scholar]
  15. G. Grosse, J. Harden, M. Turetsky, A. D. McGuire, P. Camill, C. Tarnocai, R. G. Striegl, Vulnerability of high‐latitude soil organic carbon in North America to disturbance, Journal of Geophysical Research: Biogeosciences, 116 (G4) (2011). [Google Scholar]
  16. S. K. Uda, L. Hein, E. Sumarga, Towards sustainable management of Indonesian tropical peatlands, Wetlands Ecology and Management, 25, 683-701 (2017). [CrossRef] [Google Scholar]
  17. G. Myhre, D. Shindell, F. M. Bréon, W. Collins, J. Fuglestvedt, J. Huang, H. Zhang, Anthropogenic and natural radiative forcing, Climate Change 2013-The Physical Science Basis, 659-740 (2014). [Google Scholar]
  18. D. Murdiyarso, M. Saragi-Sasmito, A. Rustini, Greenhouse gas emissions in restored secondary tropical peat swamp forests, Mitigation and Adaptation Strategies for Global Change, 24, 507-520 (2019). [Google Scholar]
  19. D. Murdiyarso, K. Hergoualc’h, L. V. Verchot, Opportunities for reducing greenhouse gas emissions in tropical peatlands, Proceedings of the National Academy of Sciences, 107 (46), 19655-19660 (2010). [Google Scholar]
  20. R. C. Goodman, M. H. Aramburu, T. Gopalakrishna, F. E. Putz, N. Gutiérrez, J. L. M. Alvarez, P. W. Ellis, Carbon emissions and potential emissions reductions from low-intensity selective logging in southwestern Amazonia, Forest Ecology and Management, 439, 18-27 (2019). [CrossRef] [Google Scholar]
  21. K. Abdalla, M. Mutema, P. Chivenge, C. Everson, V. Chaplot, Grassland degradation significantly enhances soil CO2 emission, Catena, 167, 284-292 (2018). [Google Scholar]
  22. I. Līcīte, A. Lupiķis, Impact of land use practices on greenhouse gas emissions from agriculture land on organic soils, (2020). [Google Scholar]
  23. J. Koch, L. Elsgaard, M. Greve, S. Gyldenkærne, C. Hermansen, G. Levin, S. Wu, S. Stisen, Water-table-driven greenhouse gas emission estimates guide peatland restoration at national scale, Biogeosciences (2023). [Google Scholar]
  24. A. Dechezleprêtre, M. Glachant, Y. Ménière, Technology transfer by CDM projects: A comparison of Brazil, China, India and Mexico, (2009). [Google Scholar]
  25. N. DulalHazra, Problems of Clean Development Mechanism (CDM) projects in India, The International Journal of Management, 7 (1), 84-92 (2018). [Google Scholar]
  26. N. Kreibich, L. Hermwille, C. Warnecke, C. Arens, An update on the Clean Development Mechanism in Africa during market crisis, Climate and Development, 9, 178-190 (2017). [Google Scholar]
  27. R. Smale, M. Hartley, C. Hepburn, J. Ward, M. Grubb, The impact of CO2 emissions trading on firm profits and market prices, Climate Policy, 6, 31-48 (2006). [Google Scholar]
  28. C. Azevedo-Ramos, P. Moutinho, V. Arruda, M. Stabile, A. Alencar, I. Castro, J. Ribeiro, Lawless land in no man’s land: The undesignated public forests in the Brazilian Amazon, Land Use Policy, 99, 104863 (2020). [Google Scholar]
  29. R. Kim, D. Kim, S. Cho, E. Choi, J. Park, S. Lee, Y. Son, Assessment of REDD+ MRV capacity in developing countries and implications under the Paris regime, Land (2021). [Google Scholar]
  30. J. E. Makunga, S. B. Misana, Efficacy of forest resources governance on REDD+ performance in Uvinza district, western Tanzania, Journal of Geography and Regional Planning, 10(6), 119-132 (2017). [CrossRef] [Google Scholar]
  31. T. West, J. Börner, E. Sills, A. Kontoleon, Overstated carbon emission reductions from voluntary REDD+ projects in the Brazilian Amazon, Proceedings of the National Academy of Sciences, 117, 24188-24194 (2020). [Google Scholar]
  32. A. P. Schrier-Uijl, P. S. Kroon, D. M. D. Hendriks, A. Hensen, J. Van Huissteden, F. Berendse, E. M. Veenendaal, Agricultural peatlands: towards a greenhouse gas sink–a synthesis of a Dutch landscape study, Biogeosciences, 11 (16), 4559-4576 (2014). [Google Scholar]
  33. M. Warren, S. Frolking, Z. Dai, S. Kurnianto, Impacts of land use, restoration, and climate change on tropical peat carbon stocks in the twenty-first century: implications for climate mitigation, Mitigation and Adaptation Strategies for Global Change, 22, 1041-1061 (2017). [Google Scholar]
  34. H. Gunawan, Indonesian peatland functions: Initiated peatland restoration and responsible management of peatland for the benefit of local community, case study in Riau and West Kalimantan provinces, pp. 117-138 (2018). [Google Scholar]
  35. M. Langholtz, I. Busch, A. Kasturi, M. Hilliard, J. Mcfarlane, C. Tsouris, S. Mukherjee, O. Omitaomu, S. Kotikot, M. Allen-Dumas, C. Derolph, M. Davis, E. Parish, The economic accessibility of CO2 sequestration through bioenergy with carbon capture and storage (BECCS) in the US, Land (2020). [Google Scholar]
  36. A. Premrov, D. Wilson, M. Saunders, J. Yeluripati, F. Renou-Wilson, CO2 fluxes from drained and rewetted peatlands using a new ECOSSE model water table simulation approach, Science of The Total Environment, 754, 142433 (2021). [Google Scholar]
  37. M. Saunders, R. Ingle, S. Regan, Assessing the impact of exceptional inter-annual climatic variability on net ecosystem carbon dioxide exchange rates at Clara bog, in EGU General Assembly Conference Abstracts (2021), pp. EGU21-13414. [Google Scholar]
  38. P. L. Hardré, A. D. Beesley, R. L. Miller, T. M. Pace, Faculty motivation to do research: Across disciplines in research-extensive universities, Journal of the Professoriate, 5 (1) (2011). [Google Scholar]
  39. A. Baird, C. Evans, R. Mills, P. Morris, S. Page, M. Peacock, M. Reed, B. Robroek, R. Stoneman, G. Swindles, T. Thom, J. Waddington, D. Young, Validity of managing peatlands with fire, Nature Geoscience, 12, 884-885 (2019). [Google Scholar]
  40. B. Ruijven, D. Vuuren, W. Boskaljon, M. Neelis, D. Saygin, M. Patel, Long-term model-based projections of energy use and CO2 emissions from the global steel and cement industries, Resources Conservation and Recycling, 112, 15-36 (2016). [Google Scholar]
  41. W. Zhou, L. Cui, Y. Wang, W. Li, Methane emissions from natural and drained peatlands in the Zoigê, eastern Qinghai-Tibet Plateau, Journal of Forestry Research, 28, 539-547 (2017). [CrossRef] [Google Scholar]
  42. V. Huth, A. Günther, A. Bartel, B. Hofer, O. Jacobs, N. Jantz, M. Meister, E. Rosinski, T. Urich, M. Weil, D. Zak, G. Jurasinski, Topsoil removal reduced in-situ methane emissions in a temperate rewetted bog grassland by a hundredfold, Science of The Total Environment, 721, 137763 (2020). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.