Open Access
Issue
E3S Web Conf.
Volume 622, 2025
2nd International Conference on Environment, Green Technology, and Digital Society (INTERCONNECTS 2024)
Article Number 01003
Number of page(s) 7
Section Engineering and Technology
DOI https://doi.org/10.1051/e3sconf/202562201003
Published online 04 April 2025
  1. Koon, A.D.; et al. Multisectoral Action Coalitions for Road Safety in Brazil: An Organizational Social Network Analysis in São Paulo and Fortaleza. Traffic Inj. Prev. 2022, 23, 67–72, doi: 10.1080/15389588.2021.2022129. [Google Scholar]
  2. Namatovu, S.; et al. Interventions to Reduce Pedestrian Road Traffic Injuries: A Systematic Review of Randomized Controlled Trials, Cluster Randomized Controlled Trials, Interrupted Time-Series, and Controlled before-after Studies. PLoS One 2022, 17, 1–17, doi: 10.1371/journal.pone.0262681. [Google Scholar]
  3. Oktopianto, Y.; Nabil, M.J.; Arief, Y.M. Sosialisasi Keselamatan Transportasi Jalan Pengemudi Gojek Di Kota Tegal. Kumawula J. Pengabdi. Kpd. Masy. 2021, 4, 242, doi: 10.24198/kumawula.v4i2.33321. [Google Scholar]
  4. Juan, R.S.; Kurniawan, C.; Marbun, J.; Simamora, P. Mechanical Properties of Brake Pad Composite Made from Candlenut Shell and Coconut Shell. In Proceedings of the J. Phys. Conf. Ser.; 2020; Vol. 1428. [Google Scholar]
  5. Preda, C.; Bleotu, R.M.; Pinca-Bretotean, C. Study and Thermal Analysis of Vanes Shape Design for Brake Disc in Automotive Industry. In Proceedings of the J. Phys. Conf. Ser.; 2022; Vol. 2212, pp. 0–11. [Google Scholar]
  6. García-León, R.A.; Afanador-García, N.; Gómez-Camperos, J.A. Mechanical and Dynamic Maps of Disc Brakes under Different Operating Conditions. Fluids 2021, 6, doi: 10.3390/fluids6100363. [Google Scholar]
  7. Kussuma H S, M.F.; Sutikno Testing of Mechanical Characteristics of Coconut Fiber Reinforced for Composite Brake Pads for Two-Wheeled Vehicles. In Proceedings of the IOP Conf. Ser. Mater. Sci. Eng.; 2019; Vol. 546, pp. 1–7. [Google Scholar]
  8. Ullah, Z.; Aldhabani, M.S. Physical Analysis of Thermophoresis and Variable Density Effects on Heat Transfer Assessment along a Porous Stretching Sheet and Their Applications in Nanofluid Lubrication. Lubricants 2023, 11, doi: 10.3390/lubricants11040172. [Google Scholar]
  9. Khatir, T.; Bouchetara, M.; Derrar, K.; Djafri, M.; Khatir, S.; Wahab, M.A. Thermomechanical Behavior of Brake Drums under Extreme Braking Conditions. Comput. Mater. Contin. 2022, 72, 2259–2273, doi: 10.32604/cmc.2022.020879. [Google Scholar]
  10. Skorupka, Z. Efficiency and Fatigue/Endurance Laboratory Tests of Aviation Friction Brakes. Fatigue Aircr. Struct. 2022, 2022, 104–113, doi: 10.2478/fas-2022-0008. [Google Scholar]
  11. Lee, K.; Park, K. Optimal Robust Control of a Contactless Brake System Using an Eddy Current. Mechatronics 1999. [Google Scholar]
  12. Cikanek, S.R.; Bailey, K.E. Regenerative Braking System for a Hybrid Electric Vehicle. In Proceedings of the Proc. Am. Control Conf.; 2002; Vol. 4, pp. 3129–3134. [Google Scholar]
  13. Belhocine, A.; Bakar, A.R.A.; Bouchetara, M. Numerical Modeling of Disc Brake System in Frictional Contact. Tribol. Ind. 36. [Google Scholar]
  14. Li, S.; Meng, W.; Wang, Y. Numerical and Experimental Studies on a Novel Magneto- Rheological Fluid Brake Based on Fluid-Solid Coupling. Sci. Prog. 2020, 103, 1–33, doi: 10.1177/0036850419879000. [Google Scholar]
  15. Popescu, F.D.; Radu, S.M.; Andraş, A.; Brînaş, I.; Budilică, D.I.; Popescu, V. Comparative Analysis of Mine Shaft Hoisting Systems’ Brake Temperature Using Finite Element Analysis (FEA). Mater. (Basel). 2022, 15, doi: 10.3390/ma15093363. [Google Scholar]
  16. Belhocine, A. FE Prediction of Thermal Performance and Stresses in an Automotive Disc Brake System. Int. J. Adv. Manuf. Technol. 2017, 89, 3563–3578, doi: 10.1007/s00. [Google Scholar]
  17. Habib, A.; Ali, T.; Nazir, Z.; Muskan, F.; Jawed, I.; Akilimali, A. Unveiling Pakistan’s Transport Problems: A Call to Safeguard Public Health. Front. Public Heal. 2024, 12, 1–5, doi: 10.3389/fpubh.2024.1325193. [Google Scholar]
  18. Yang, K.; Guan, X.; Zhang, X.; Liu, C. CFD-Aided Approach of Modelling and Dynamic Characteristic Optimization for a Highly Nonlinear Auxiliary Braking System. Eng. Appl. Comput. Fluid Mech. 2022, 16, 1546–1566, doi: 10.1080/19942060.2022.2103589. [Google Scholar]
  19. Borawski, A.; Szpica, D.; Mieczkowski, G. Laboratory Tests on the Possibility of Using Flax Fibers as a Plant-Origin Reinforcement Component in Composite Friction Materials for Vehicle Braking Systems. Mater. (Basel). 2024, 17, doi: 10.3390/ma17122861. [Google Scholar]
  20. Chidambaram, R.K.; et al. Effect of Regenerative Braking on Battery Life. Energies 2023, 16, doi: 10.3390/en16145303. [Google Scholar]
  21. Kumar, P.K.D.; Gnanaraj, S.D. Aluminium-Silicon Based Metal Matrix Composites for Brake Rotor Applications: A Review. Eng. Res. Express 2023, 5, doi: 10.1088/2631-8695/accdb6. [Google Scholar]
  22. Cai, X.; Lei, C.; Peng, B.; Tang, X.; Gao, Z. Road Traffic Safety Risk Estimation Method Based on Vehicle Onboard Diagnostic Data. J. Adv. Transp. 2020, 2020, doi: 10.1155/2020/3024101. [Google Scholar]
  23. Mahmood, M.T.; Ahmed, S.R.A.; Ahmed, M.R.A. Detection of Vehicle with Infrared Images in Road Traffic Using YOLO Computational Mechanism. In Proceedings of the IOP Conference Series: Materials Science and Engineering; 2020; Vol. 928. [Google Scholar]
  24. Nandiyanto, A.B.D.; et al. Utilization of Bamboo Powder in The Production of NonAsbestos Brake Pads: Computational Bibliometric Literature Review Analysis and Experiments to Support Sustainable Development Goals (SDGs). Automot. Exp. 2024, 7, 111–131, doi: 10.31603/ae.11109. [Google Scholar]
  25. Kiran, S.; et al. Multi-Layered Deep Learning Features Fusion for Human Action Recognition. Comput. Mater. Contin. 2021, 69, 4061–4075, doi: 10.32604/cmc.2021.017800. [Google Scholar]
  26. Vinet, L.; Zhedanov, A. A ‘Missing’ Family of Classical Orthogonal Polynomials. J. Phys. A Math. Theor. 2011, 44, 1–13, doi: 10.1088/1751-8113/44/8/085201. [Google Scholar]
  27. Jahan, F.; Soni, M.; Wakeel, S.; Ahmad, S.; Bingol, S. Selection of Automotive Brake Material Using Different MCDM Techniques and Their Comparisons. J. Eng. Sci. Technol. Rev. 2022, 15, 24–33, doi: 10.25103/jestr.151.04. [Google Scholar]
  28. Fei, J.; Li, H.J.; Fu, Y.W.; Qi, L.H.; Zhang, Y.L. Effect of Phenolic Resin Content on Performance of Carbon Fiber Reinforced Paper-Based Friction Material. Wear 2010, 269, 534–540, doi: 10.1016/j.wear.2010.05.008. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.