Open Access
Issue
E3S Web Conf.
Volume 622, 2025
2nd International Conference on Environment, Green Technology, and Digital Society (INTERCONNECTS 2024)
Article Number 01008
Number of page(s) 13
Section Engineering and Technology
DOI https://doi.org/10.1051/e3sconf/202562201008
Published online 04 April 2025
  1. Verma, P.; Sharma, M.P. Review of Process Parameters for Biodiesel Production from Different Feedstock. Renew. Sustain. Energy Rev. 2016, 62, 1063–1071. [Google Scholar]
  2. Palani, Y.; Devarajan, C.; Manickam, D.; Thanikodi, S. Performance and emission characteristics of biodiesel-blend in diesel engine: A review. Environ. Eng. Res. 2022, 27, 200338. [Google Scholar]
  3. Yilmaz, N.; Vigil Francisco, M.; Burl Donaldson, A.; Darabseh, T. Investigation of CI Engine Emissions in Biodiesel-Ethanol-Diesel Blends as a Function of Ethanol Concentration. Fuel 2014, 115, 790–793. [Google Scholar]
  4. Doppalapudi, A.T.; Kalam Azad, A.; Masud Kamal Khan, M. Exergy, energy, performance, and combustion analysis for biodiesel NOx reduction using new blends with alcohol, nanoparticle, and essential oil. J. Clean. Prod. 2024, 467, 142968. [Google Scholar]
  5. Aljaafari, A.; Fattah, I.M.R.; Jahirul, M.I.; Gu, Y.; Mahlia, T.M.I.; Islam, M.A.; Islam, M.S. Biodiesel Emissions: A State-of-the-Art Review on Health and Environmental Impacts. Energies 2022, 15, 6854. [Google Scholar]
  6. Azadbakht, M.; Safieddin Ardebili, S.; Rahmani, M. A study on biodiesel production using agricultural wastes and animal fats. Biomass Convers. Biorefinery 2023, 13, 4893–4899. [Google Scholar]
  7. Vignesh, P.; Pradeep Kumar, A.R.; Shankar Ganesh, N.; Jayaseelan, V.; Sudhakar, K. A review of conventional and renewable biodiesel production. Chinese J. Chem. Eng. 2021, 40, 1–17. [CrossRef] [Google Scholar]
  8. Avizenna, M.H.; Widyanto, R.A.; Hendradi, P.; Hanafi, M.; Prabowo, N.A.; Pujiarto, B. Development of E-learning Muhammadiyah (El-Mu) at Mutual Junior High School, Magelang City. Community Empower. 2023, 8, 984–991, doi: 10.31603/ce.6982. [Google Scholar]
  9. Silitonga, A.S.; Masjuki, H.H.; Mahlia, T.M.I.; Ong, H.C.; Chong, W.T.; Boosroh, M.H. Overview properties of biodiesel diesel blends from edible and non-edible feedstock. Renew. Sustain. Energy Rev. 2013, 22, 346–360. [Google Scholar]
  10. Tung Chong, C.; Yu Loe, T.; Yao Wong, K.; Ashokkumar, V.; Shiung Lam, S.; Tong Chong, W.; Borrion, A.; Tian, B.; Ng, J.-H. Biodiesel sustainability: The global impact of potential biodiesel production on the energy-water-food (EWF) nexus. Environ. Technol. Innov. 2021, 22, 101408. [Google Scholar]
  11. Roick, C.; Otun, K.O.; Diankanua, N.; Joshua, G. Non-Edible Feedstock for Biodiesel Production. Biodiesel Technol. Appl. 2021, 285–309. [Google Scholar]
  12. Abdulhakim Shaah, M.; Sohrab Hossain, M.; Allafi, F.; Omar Ab Kadir, M.; Idayu Ahmad, M. Biodiesel Production from Candlenut Oil Using a Non-Catalytic Supercritical Methanol Transesterification Process: Optimization, Kinetics, and Thermodynamic Studies. R. Soc. Chem. 2022, 12, 9845–9861. [Google Scholar]
  13. Syimir Fizal, A.N.; Hossain, M.S.; Zulkifli, M.; Khalil, N.A.; Abd Hamid, H.; Ahmad Yahaya, A.N. Implementation of the Supercritical CO2 Technology for the Extraction of Candlenut Oil as a Promising Feedstock for Biodiesel Production: Potential and Limitations. Int. J. Green Energy 2021, 19, 72–83. [Google Scholar]
  14. Haetami, K.; Junianto, J.; Iskandar, I.; Abun, A. Effect of Blend Oils from Waste Paring Coconut and Candlenut and Selenium for Formulating of Feed-in Nile Tilapia and Production Parameters. Preprints 2021, 1–11. [Google Scholar]
  15. Daming, H.; Zhou, H.; Lin, L. Biodiesel: an Alternative to Conventional Fuel. Energy Procedia 2012, 16, 1874–1885. [CrossRef] [Google Scholar]
  16. Zhang, Y.; Zhong, Y.; Wang, J.; Tan, D.; Zhang, Z.; Yang, D. Effects of Different Biodiesel-Diesel Blend Fuel on Combustion and Emission Characteristics of a Diesel Engine. Processes 2021, 9, 1984. [Google Scholar]
  17. Yesilyurt, M.K.; Aydin, M.; Yilbasi, Z.; Arslan, M. Investigation on the structural effects of the addition of alcohols having various chain lengths into the vegetable oilbiodiesel-diesel fuel blends: An attempt for improving the performance, combustion, and exhaust emission characteristics of a compression ignition engine. Fuel 2020, 269, 117455. [CrossRef] [Google Scholar]
  18. Chuah, L.F.; Bokhari, A.; Asif, S.; Klemeš, J.J.; Dailin, D.J.; Enshasy, H.E.; Yusof, A.H.M. A Review of Performance and Emission Characteristic of Engine Diesel Fuelled by Biodiesel. Chem. Eng. Trans. 2022, 94, 1099–1104. [Google Scholar]
  19. Kolakoti, A.; Prasadarao, B.; Satyanarayana, K.; Setiyo, M.; Köten, H.; Raghu, M. Elemental, Thermal and Physicochemical Investigation of Novel Biodiesel from Wodyetia Bifurcata and Its Properties Optimization using Artificial Neural Network (ANN). Automot. Exp. 2022, 5, 3–15. [Google Scholar]
  20. Tse, H.; Leung, C.W.; Cheung, C.S. Investigation on the combustion characteristics and particulate emissions from a diesel engine fueled with diesel-biodiesel-ethanol blends. Energy 2015, 83, 343–350. [Google Scholar]
  21. Razak, N.H.; Hashim, H.; Yunus, N.A.; Klemeš, J.J. Reducing diesel exhaust emissions by optimisation of alcohol oxygenates blend with diesel/biodiesel. J. Clean. Prod. 2021, 316, 128090. [Google Scholar]
  22. Munuswamy, D.B.; Devarajan, Y.; Ramalingam, S.; Subramani, S.; Munuswamy, N.B. Critical Review on Effects of Alcohols and Nanoadditives on Performance and Emission in Low-Temperature Combustion Engines: Advances and Perspectives. Energy & Fuels 2022, 36, 7245–7268. [Google Scholar]
  23. Vergel-Ortega, M.; Valencia-Ochoa, G.; Duarte-Forero, J. Experimental study of emissions in single-cylinder diesel engine operating with diesel-biodiesel blends of palm oil-sunflower oil and ethanol. Case Stud. Therm. Eng. 2021, 26, 101190. [CrossRef] [Google Scholar]
  24. Winangun, K.; Setiyawan, A.; Buntoro, G.A.; Sudarmanta, B. The impact of adding hydrogen on the performance of a CI engine fueled by palm biodiesel. In Proceedings of the BIS Energy and Engineering; 2024; Vol. 1, p. V124024. [Google Scholar]
  25. Rokhman, T.; Paridawati, P.; Rahmanto, R.H.; Surahto, A.; Prasetyo, D.A. Performance optimization of pertalite fuel gasoline engine with the addition of turpentine oil and ethanol. In Proceedings of the BIS Energy and Engineering; 2024; Vol. 1, p. V124020. [Google Scholar]
  26. Chuah, L.F.; Klemeš, J.J.; Yusup, S. Influence of Fatty Acids in Waste Cooking Oil for Cleaner Biodiesel. Clean Technol. Environ. Policy 2017, 19, 859–868. [CrossRef] [Google Scholar]
  27. Borella, M.; Casazza, A.A.; Busca, G.; Garbarino, G. Two-stage co-pyrolysis of Kraft lignin and palm oil mixture to biofuels: The role of lignin as a methylation agent for methyl ester formation. Fuel Process. Technol. 2024, 257, 108092. [Google Scholar]
  28. McCormick, R.L.; Fioroni, G.M.; Mohamed, S.Y.; Naser, N.; Alleman, T.L.; Kim, S.; Wang, Z.; Lin, Y.; Ju, Y.; Kar, K. Fuel property evaluation of unique fatty acid methyl esters containing ß-hydroxy esters from engineered microorganisms. Fuel Commun. 2024, 19, 100120. [Google Scholar]
  29. Kolakoti, A.; Setiyo, M.; Waluyo, B. Biodiesel Production from Waste Cooking Oil: Characterization, Modeling and Optimization. Mech. Eng. Soc. Ind. 2021, 1, 22–30. [Google Scholar]
  30. Mirhashemi, F.S.; Sadrnia, H. NOX emissions of compression ignition engines fueled with various biodiesel blends: A review. J. Energy Inst. 2020, 93, 129–151. [Google Scholar]
  31. Masera, K.; Hossain, A.K. Advancement of biodiesel fuel quality and NOx emission control techniques. Renew. Sustain. Energy Rev. 2023, 178, 113235. [CrossRef] [Google Scholar]
  32. Burmana, A.D.; Tambun, R.; Haryanto, B.; Sarah, M.; Alexander, V. Recycling heterogeneous catalyst waste in biodiesel production using methanol and hydrochloric acid: A case study on the washing effect with lauric acid as raw material. Case Stud. Chem. Environ. Eng. 2023, 8, 100510. [Google Scholar]
  33. BSN Indonesian National Standard Biodiesel 2015. [Google Scholar]
  34. Ilminnafik, N.; Hardiatama, I.; Rosadi, A.A.; Sanata, A.; Firdausi, F. Ethanol Blend Effects on The Spray Properties of a Biodiesel Fuel by Ambient Pressure Variation. Indones. J. Appl. Res. 2023, 4, 93–103. [Google Scholar]
  35. Zaharin, M.S.M.; Abdullah, N.R.; Najafi, G.; Sharudin, H.; Yusaf, T. Effects of Physicochemical Properties of Biodiesel Fuel Blends with Alcohol on Diesel Engine Performance and Exhaust Emissions: A Review. Renew. Sustain. Energy Rev. 2017, 79, 475–493. [Google Scholar]
  36. Setiyo, M.; Yuvenda, D.; Samuel, O.D. The Concise Latest Report on the Advantages and Disadvantages of Pure Biodiesel (B100) on Engine Performance: Literature Review and Bibliometric Analysis. Indones. J. Sci. Technol. 2021, 6, 469–490. [Google Scholar]
  37. Syarifudin, H.N.; Cahyo, A.; Suprihadi; Dairoh The Effect of Variation in Palm Oil Volume on the Chemical and Physical Properties of Biodiesel Mixtures of Solar-Palm Oil-Alcohol (Methanol, Ethanol, Butanol). Konversi 2020, 8, 2549–6840. [Google Scholar]
  38. Kaisan, M.U.; Anafi, F.O.; Nuszkowski, J.; Kulla, D.M.; Umaru, S. Calorific value, flash point and cetane number of biodiesel from cotton, jatropha and neem binary and multi-blends with diesel. Biofuels 2017, 11, 321–327. [Google Scholar]
  39. Rumahorbo, A.M.; Hazwi, M. Experimental Analysis of Diesel Engine Performance Using Biofuel Vitamine Engine Power Booster Mixture. J. e-Dinamis 2014, 9, 1–10. [Google Scholar]
  40. Setyawan, D.L.; Ilminnafik, N.; Sutjahjono, H.; Wafir, M. Performance of Small Diesel Engine with Pertadex and Biodiesel Mixed Fuel from Kemiri Seeds. Int. J. Eng. Res. Technol. 2022, 11. [Google Scholar]
  41. Widianto, A. Test of the ability of diesel-biodiesel fuel blends from castor bean oil on the performance and opacity of a 4-stroke diesel engine. J. Tek. Mesin 2014, 2, 38–46. [Google Scholar]
  42. Kolakotia, A.; Setiyo, M.; Rochman, M.L. A Green Heterogeneous Catalyst Production and Characterization for Biodiesel Production using RSM and ANN Approach. Int. J. Renew. Energy Dev. 2022, 11, 703–712. [Google Scholar]
  43. Thomaz, F.; Baeta, J. Effects of Engine Speed on the Performance at Extreme Vehicle Driving Conditions. SAE Tech. Pap. 2020, 2019-36-0297. [Google Scholar]
  44. Ishihara, K.; Yoneyama, K.; Watanabe, H.; Itouyama, N.; Kawasaki, A.; Matsuoka, K.; Kasahara, J.; Funaki, I.; Matsuo, A.; Higashino, K. Thrust Performance of Converging Rotating Detonation Engine Compared with Steady Rocket Engine. J. Propuls. Power 2023, 39. [Google Scholar]
  45. Iodice, P.; Amoresano, A.; Langella, G. A review on the effects of ethanol/gasoline fuel blends on NOX emissions in spark-ignition. Biofuel Res. J. 2021, 32, 1465–1480. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.