Open Access
Issue |
E3S Web Conf.
Volume 622, 2025
2nd International Conference on Environment, Green Technology, and Digital Society (INTERCONNECTS 2024)
|
|
---|---|---|
Article Number | 01013 | |
Number of page(s) | 12 | |
Section | Engineering and Technology | |
DOI | https://doi.org/10.1051/e3sconf/202562201013 | |
Published online | 04 April 2025 |
- Gokulakrishnan, S.A.; Kumar, V.; Arthanareeswaran, G.; Ismail, A.F.; Jaafar, J. Thermally Stable Nanoclay and Functionalized Graphene Oxide Integrated SPEEK Nanocomposite Membranes for Direct Methanol Fuel Cell Application. Fuel 2022, 329, doi: 10.1016/j.fuel.2022.125407. [Google Scholar]
- Jiang, Z.; Zhao, X.; Manthiram, A. Sulfonated Poly(Ether Ether Ketone) Membranes with Sulfonated Graphene Oxide Fillers for Direct Methanol Fuel Cells. Int J Hydrog. Energy 2013, 38, 5875–5884, doi: 10.1016/j.ijhydene.2013.02.129. [Google Scholar]
- Chien, H.C.; Tsai, L.D.; Huang, C.P.; Kang, C.Y.; Lin, J.N.; Chang, F.C. Sulfonated Graphene Oxide/Nafion Composite Membranes for High-Performance Direct Methanol Fuel Cells. Int J Hydrog. Energy 2013, 38, 13792–13801, doi: 10.1016/j.ijhydene.2013.08.036. [Google Scholar]
- Branco, C.M.; Sharma, S.; de Camargo Forte, M.M.; Steinberger-Wilckens, R. New Approaches towards Novel Composite and Multilayer Membranes for Intermediate Temperature-Polymer Electrolyte Fuel Cells and Direct Methanol Fuel Cells. J. Power Sources 2016, 316, 139–159, doi: 10.1016/j.jpowsour.2016.03.052. [Google Scholar]
- Zarrin, H.; Higgins, D.; Jun, Y.; Chen, Z.; Fowler, M. Functionalized Graphene Oxide Nanocomposite Membrane for Low Humidity and High Temperature Proton Exchange Membrane Fuel Cells. J. Phys. Chem. C 2011, 115, 20774–20781, doi: 10.1021/jp204610j. [Google Scholar]
- Esmaeili, N.; Gray, E.M.A.; Webb, C.J. Non-Fluorinated Polymer Composite Proton Exchange Membranes for Fuel Cell Applications - A Review. ChemPhysChem 2019, 20, 2016–2053, doi: 10.1002/cphc.201900191. [CrossRef] [PubMed] [Google Scholar]
- Elham, O.S.J.; Kamarudin, S.K.; Shaari, N.; Zainoodin, A.M.; Zakaria, Z.; Yusof, M.R. Development of Low-Cost Nafion-Lignin Composite Conductive Membranes for Application in Direct Methanol Fuel Cells. J. Environ. Chem. Eng. 2024, 12, 111514, doi: 10.1016/j.jece.2023.111514. [Google Scholar]
- Şahin, A.; Ar, I. Synthesis, Characterization and Fuel Cell Performance Tests of Boric Acid and Boron Phosphate Doped, Sulphonated and Phosphonated Poly(Vinyl Alcohol) Based Composite Membranes. J. Power Sources 2015, 288, 426–433, doi: 10.1016/j.jpowsour.2015.03.188. [Google Scholar]
- Boroglu, M.S.; Celik, S.U.; Boz, I.; Bozkurt, A. Sulfonated Poly(Vinyl Alcohol)/Triazole Blends as Anhydrous Proton Conducting Membranes for Polymer Electrolyte Membrane Fuel Cells. J. Mater. Res. 2013, 28, 1458–1465, doi: 10.1557/jmr.2013.111. [Google Scholar]
- Kwon, S.; Lee, B.; Kim, T.H. High Performance Blend Membranes Based on Densely Sulfonated Poly(Fluorenyl Ether Sulfone) Block Copolymer and Imidazolium- Functionalized Poly(Ether Sulfone). Int. J. Hydrogen Energy 2017, 42, 20176–20186, doi: 10.1016/j.ijhydene.2017.06.040. [Google Scholar]
- Nikouei, M.A.; Oroujzadeh, M.; Mehdipour-Ataei, S. The PROMETHEE Multiple Criteria Decision Making Analysis for Selecting the Best Membrane Prepared from Sulfonated Poly(Ether Ketone)s and Poly(Ether Sulfone)s for Proton Exchange Membrane Fuel Cell. Energy 119, 77–85. [Google Scholar]
- Gandhimathi, S.; Krishnan, H.; Paradesi, D. Development of Proton-Exchange Polymer Nanocomposite Membranes for Fuel Cell Applications. Polym. Polym. Compos. 2020, 28, 492–501 DO. [Google Scholar]
- Sun, H.; Xie, C.; Chen, H.; Almheiri, S. A Numerical Study on the Effects of Temperature and Mass Transfer in High Temperature PEM Fuel Cells with Ab-PBI Membrane. Appl. Energy 2015, 160, 937–944, doi: 10.1016/j.apenergy.2015.02.053. [Google Scholar]
- Sinirlioglu, D.; Celik, S.U.; Muftuoglu, A.E.; Bozkurt, A. Novel Membranes Based on Poly(5-(Methacrylamido)Tetrazole) and Sulfonated Polysulfone for Proton Exchange Membrane Fuel Cells. J. Appl. Polym. Sci. 2014, 131, doi: 10.1002/app.40107. [Google Scholar]
- Şengül, E.; Erdener, H.; Akay, R.G.; Yücel, H.; Baç, N.; Eroğlu, I.I. Effects of Sulfonated Polyether-Etherketone (SPEEK) and Composite Membranes on the Proton Exchange Membrane Fuel Cell (PEMFC) Performance. Int. J. Hydrogen Energy 2009, 34, 4645–4652, doi: 10.1016/j.ijhydene.2008.08.066. [Google Scholar]
- Hou, H.; et al. Thermal Crosslinked and Nanodiamond Reinforced SPEEK Composite Membrane for PEMFC. Int J Hydrog. Energy 2013, 38, 3346–3351, doi: 10.1016/j.ijhydene.2012.12.019. [Google Scholar]
- Wang, X.; Jin, M.; Li, Y.; Zhao, L. The Influence of Various Ionic Liquids on the Properties of SPEEK Membrane Doped with Mesoporous Silica. Electrochim Acta 2017, 257, 290–300, doi: 10.1016/j.electacta.2017.10.098. [Google Scholar]
- Dong, C.; et al. Facile Synthesis of Metal Oxide Nanofibers and Construction of Continuous Proton-Conducting Pathways in SPEEK Composite Membranes. Int J Hydrog. Energy 2017, 42, 25388–25400, doi: 10.1016/j.ijhydene.2017.08.136. [Google Scholar]
- Gashoul, F.; Parnian, M.J.; Rowshanzamir, S. A New Study on Improving the Physicochemical and Electrochemical Properties of SPEEK Nanocomposite Membranes for Medium Temperature Proton Exchange Membrane Fuel Cells Using Different Loading of Zirconium Oxide Nanoparticles. Int J Hydrog. Energy 2017, 42, 590–602, doi: 10.1016/j.ijhydene.2016.11.132. [Google Scholar]
- Salarizadeh, P.; Javanbakht, M.; Pourmahdian, S.; Beydaghi, H. Influence of Amine- Functionalized Iron Titanate as Filler for Improving Conductivity and Electrochemical Properties of SPEEK Nanocomposite Membranes. Chem. Eng. J. 299, 320–331, doi: 10.1016/j.cej.2016.04.086. [CrossRef] [Google Scholar]
- Li, C.; et al. Enhanced Performance of Sulfonated Poly (Ether Ether Ketone) Membranes by Blending Fully Aromatic Polyamide for Practical Application in Direct Methanol Fuel Cells (DMFCs). Int. J. Hydrogen Energy 42, 28567–28577, doi: 10.1016/j.ijhydene.2017.09.166. [Google Scholar]
- Mollá, S.; Compañ, V. Nanocomposite SPEEK-Based Membranes for Direct Methanol Fuel Cells at Intermediate Temperatures. J. Memb. Sci. 492, 123–136, doi: 10.1016/j.memsci.2015.05.055. [Google Scholar]
- Liu, X.; et al. Electrospun Multifunctional Sulfonated Carbon Nanofibers for Design and Fabrication of SPEEK Composite Proton Exchange Membranes for Direct Methanol Fuel Cell Application. Int. J. Hydrogen Energy 42, 10275–10284, doi: 10.1016/j.ijhydene.2017.02.128. [Google Scholar]
- Liu, R.; et al. Facile Synthesis and Properties of Poly(Ether Ketone Cardo)s Bearing Heterocycle Groups for High Temperature Polymer Electrolyte Membrane Fuel Cells. J. Memb. Sci. 2021, 636, doi: 10.1016/j.memsci.2021.119584. [Google Scholar]
- Salleh, M.T.; et al. Stability of SPEEK/Cloisite®/TAP Nanocomposite Membrane under Fenton Reagent Condition for Direct Methanol Fuel Cell Application. Polym. Degrad. Stab. 2017, 137, 83–99, doi: 10.1016/j.polymdegradstab.2016.12.011. [Google Scholar]
- Sgreccia, E.; di Vona, M.L.; Knauth, P. Hybrid Composite Membranes Based on SPEEK and Functionalized PPSU for PEM Fuel Cells. Int. J. Hydrogen Energy 2011, 36, 8063–8069, doi: 10.1016/j.ijhydene.2010.11.073. [Google Scholar]
- Wan, C.H.; Huang, Y.; Leong, Y.K.; Gu, Y. Improving the Performance of Direct Methanol Fuel Cells Using a Performance-Enhancing Layer. Fuel 2024, 366, 131366, doi: 10.1016/j.fuel.2024.131366. [Google Scholar]
- Chi, X.; Chen, F.; Mo, T.; Li, Y.; Wei, W. Improve Methanol Efficiency for Direct Methanol Fuel Cell System via Investigation and Control of Optimal Operating Methanol Concentration. Energy 2024, 290, doi: 10.1016/j.energy.2023.130147. [Google Scholar]
- Chikumba, F.T.; Tamer, M.; Akyalçın, L.; Kaytakoğlu, S. The Development of Sulfonated Polyether Ether Ketone (SPEEK) and Titanium Silicon Oxide (TiSiO4) Composite Membranes for DMFC Applications. Int. J. Hydrogen Energy 2023, 48, 14038–14052, doi: 10.1016/j.ijhydene.2022.12.293. [Google Scholar]
- Kumar, K.S.; Rajendran, S.; Prabhu, M.R. A Study of Influence on Sulfonated TiO2 - Poly (Vinylidene Fluoride-Co-Hexafluoropropylene) Nano Composite Membranes for PEM Fuel Cell Application. Appl. Surf. Sci. 2017, 418, 64–71. [Google Scholar]
- Gnana Kumar, G.; Kim, A.R.; Nahm, K.S.; Yoo, D.J. High Proton Conductivity and Low Fuel Crossover of Polyvinylidene Fluoride-. [Google Scholar]
- Kumar, P.; Singh, A.D.; Kumar, V.; Kundu, P.P. Incorporation of Nano-Al2O3 within the Blend of Sulfonated-PVdF-Co-HFP and Nafion for High Temperature Application in DMFCs. RSC Adv. 5, 63465–63472. [Google Scholar]
- Niu, Y.; et al. Preparation, Structures and Properties of Phosphate/S-PEEK Hybrid Composites Utilized Sintering Al(OH)3 Particles as Curing Agents. Ceram. Int. 2021, 47, 9711–9716, doi: 10.1016/j.ceramint.2020.12.110. [Google Scholar]
- Poinern, G.E.J.; Ali, N.; Fawcett, D. Progress in Nano-Engineered Anodic Aluminum Oxide Membrane Development. Materials (Basel). 2010, 4, 487–526, doi: 10.3390/ma4030487. [Google Scholar]
- Radwan, A.B.; Abdullah, A.M.; Mohamed, A.M.A.; Al-Maadeed, M.A. New Electrospun Polystyrene/Al2O3 Nanocomposite Superhydrophobic Coatings; Synthesis, Characterization, and Application. Coatings 2018, 8, doi: 10.3390/coatings8020065. [Google Scholar]
- Kusworo, T.D.; Hakim, M.F.; Hadiyanto, H. Enhancement of Hybrid Speek Based Polymer-Cyclodextrin-Silica Inorganic Membrane for Direct Methanol Fuel Cell Application. Int. J. Renew. Energy Dev. 2017, 6, 165–170, doi: 10.14710/ijred.6.2.165-170. [Google Scholar]
- Purnama, H.; Mujiburohman, M.; Hakim, M.F.; Hidayati, N. Preparation and Characterisation of Composite Sulfonated Polyether Ether Ketone for Direct Methanol Fuel Cells. In Proceedings of the Journal of Physics: Conference Series; 2019; Vol. 1295. [Google Scholar]
- Selvakumar, K.; Rajendran, S.; Prabhu, M.R. Influence of Barium Zirconate on SPEEK-Based Polymer Electrolytes for PEM Fuel Cell Applications. Ionics (Kiel) 2019, 25, 2243–2253, doi: 10.1007/s11581-018-2613-4. [Google Scholar]
- Roy, T.; Wanchoo, S.K.; Pal, K. Synergetic Proton-Conducting Effect of Sulfonated PEEK-MO2-CNT Membranes for PEMFC Applications. Ionics (Kiel) 2021, 27, 48594873, doi: 10.1007/s11581-021-04259-8. [Google Scholar]
- Mahimai, B.M.; Kulasekaran, P.; Sivasubramanian, G.; Deivanayagam, P. Sulfonated Poly (Ether Ether Ketone) / Barium Strontium Titanium Oxide Polymer Nanocomposite Membranes for Fuel Cell Applications. Polym. Technol. Mater. 2020, 59, 1791–1800, doi: 10.1080/25740881.2020.1765385. [Google Scholar]
- Maiti, T.K.; et al. Development of Sulfonic Acid-Functionalized Tetraethyl Orthosilicate Derivative Cross-Linked with Sulfonated PEEK Membranes for Fuel Cell Applications. J. Solid State Electrochem. 2022, doi: 10.1007/s10008-022-05276-x. [Google Scholar]
- Niu, Y.; Zheng, S.; Zhang, X.; Ma, Y.; Pei, Y.; Wang, C. Preparation, Structures and Properties of Interpenetrating Network Structure-Type Phosphate/PEEK Composites with Enhanced Compressive Strength and High Temperature Resistance. Ceram. Int. 2020, 46, 19973–19980, doi: 10.1016/j.ceramint.2020.05.065. [Google Scholar]
- Wan Mohd Noral Azman, W.N.E.; et al. Highly Selective SPEEK/ENR Blended Polymer Electrolyte Membranes for Direct Methanol Fuel Cell. Mater Today Energy 2020, 17, doi: 10.1016/j.mtener.2020.100427. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.