Open Access
Issue
E3S Web Conf.
Volume 622, 2025
2nd International Conference on Environment, Green Technology, and Digital Society (INTERCONNECTS 2024)
Article Number 03001
Number of page(s) 10
Section ICT and Computer Science
DOI https://doi.org/10.1051/e3sconf/202562203001
Published online 04 April 2025
  1. Zayadi, R.; Andajani, S.; Indrawati, E.; Kusumah, I.H.; Alam, N.K. Landslide Disaster Mitigation Training Using the Vegetative Method in the Kasepuhan Traditional Village, Sukabumi Regency. Community Empowerment 2022, 7, 1119–1129, doi:10.31603/ce.6772. [Google Scholar]
  2. Barla, M.; Antolini, F. An Integrated Methodology for Landslides’ Early Warning Systems. Landslides 2016, 13, 215–228, doi:10.1007/s10346-015-0563-8. [Google Scholar]
  3. Segoni, S.; Piciullo, L.; Gariano, S.L. Preface: Landslide Early Warning Systems: Monitoring Systems, Rainfall Thresholds, Warning Models, Performance Evaluation and Risk Perception. Natural Hazards and Earth System Sciences 2018, 18, 3179–3186, doi:10.5194/nhess-18-3179-2018. [Google Scholar]
  4. Hemachandra, K.; Haigh, R.; Amaratunga, D. Enablers for Effective Multi-Hazard Early Warning System: A Literature Review BT - ICSECM 2019.; 2021; pp. 399–416. [Google Scholar]
  5. Nugroho, H.S.W.; Surtinah, N.; Putri, V.D.O.; Setyowati, S.H. Collaboration with the Disaster Resilient Village Forum in Disaster Emergency Response Simulation in Ngelang Kartoharjo Village Magetan. Frontiers in Community Service and Empowerment 2024, 3, 1–6. [Google Scholar]
  6. Barzegar, M.; Blanks, S.; Sainsbury, B.-A.; Timms, W. MEMS Technology and Applications in Geotechnical Monitoring: A Review. Measurement Science and Technology 2022, 33, 52001, doi:10.1088/1361-6501/ac4f00. [Google Scholar]
  7. Casagli, N.; Intrieri, E.; Tofani, V.; Gigli, G.; Raspini, F. Landslide Detection, Monitoring and Prediction with Remote-Sensing Techniques. Nature Reviews Earth & Environment 2023, 4, 51–64, doi:10.1038/s43017-022-00373-x. [CrossRef] [Google Scholar]
  8. Pecoraro, G.; Calvello, M.; Piciullo, L. Monitoring Strategies for Local Landslide Early Warning Systems. Landslides 2019, 16, 213–231, doi:10.1007/s10346-018-1068-z. [Google Scholar]
  9. Pujar, P.M.; Kulkarni, U.M.; Kulkarni, R.M.; Kenchannavar, H.H. Chapter 4 - Internet of Things-Based Disaster Management System. In; Denizli, A., Alencar, M.S., Nguyen, T.A., Motaung, D.E.B., Eds.; Elsevier, 2022; pp. 59–84. [Google Scholar]
  10. Ray, P.P.; Mukherjee, M.; Shu, L. Internet of Things for Disaster Management: State- of-the-Art and Prospects. IEEE Access 2017, 5, 18818–18835, doi:10.1109/ACCESS.2017.2752174. [CrossRef] [Google Scholar]
  11. Pamungkas, D.R.; Setiawan, A.; Widiyanto, A. Design of Arduino-Based LPG Gas Leak Detection Tool Using MQ-6 Sensor. ITEJ 2024, 1, 21–27, doi:10.31603/itej.10687. [CrossRef] [Google Scholar]
  12. Ardiansyah, F.I.; Nuryanto, N.; Widiyanto, A. The Automation of Water Control in the Field Football With Arduino Uno. ITEJ 2024, 1, 63–69, doi:10.31603/itej.10688. [CrossRef] [Google Scholar]
  13. Intrieri, E.; Carlà, T.; Gigli, G. Forecasting the Time of Failure of Landslides at Slope- Scale: A Literature Review. Earth-Science Reviews 2019, 193, 333–349, doi:https://doi.org/10.1016/j.earscirev.2019.03.019. [Google Scholar]
  14. Abraham, M.T.; Satyam, N.; Pradhan, B.; Alamri, A.M. Iot-Based Geotechnical Monitoring of Unstable Slopes for Landslide Early Warning in the Darjeeling Himalayas. Sensors (Switzerland) 2020, 20, doi:10.3390/s20092611. [Google Scholar]
  15. Uchimura, T.; et al. Precaution and Early Warning of Surface Failure of Slopes Using Tilt Sensors. Soils and Foundations 2015, 55, 1086–1099, doi:https://doi.org/10.1016/j.sandf.2015.09.010. [Google Scholar]
  16. Fatmaryanti, S.D.; et al. Active and Authentic Learning in Remote Laboratory: Means of Improving Prospective Physics Teachers’ Multiple Representation Ability. TEM Journal 2024, 13, 1018–1027, doi:10.18421/TEM132-16. [Google Scholar]
  17. Indrawati, F.Y.; Fatmaryanti, S.D.; Maftukhin, A. Pengaruh Pembelajaran Fisika Menggunakan Model SETS (Science, Environment, Technology, and Society) Terintegrasi Mitigasi Bencana Alam Terhadap Kemampuan Analisis Dan Transferable Skills Peserta Didik. Radiasi: Jurnal Berkala Pendidikan Fisika 2019, 12, 54–60. [Google Scholar]
  18. Fatmaryanti, S.D.; Kurniawan, E.S.; Pratiwi, U.; Akhdinirwanto, R.W. Disaster Mitigation in Physics Learning: Pedagogical Approach and Teaching Material Based on Higher Order Thinking Skills. In Proceedings of the Proceedings of the 2nd Borobudur International Symposium on Science and Technology (BIS-STE 2020); 2021; Vol. 203, pp. 165–168. [Google Scholar]
  19. Zambrano, A.M.; Calderón, X.; Jaramillo, S.; Zambrano, O.M.; Esteve, M.; Palau, C. No Title. In. [Google Scholar]
  20. Esposito, M.; Palma, L.; Belli, A.; Sabbatini, L.; Pierleoni, P. Recent Advances in Internet of Things Solutions for Early Warning Systems: A Review. Sensors 2022, 22, doi:10.3390/s22062124. [PubMed] [Google Scholar]
  21. Zulkifli, C.Z.; et al. IoT-Based Water Monitoring Systems: A Systematic Review. Water (Switzerland) 2022, 14, doi:10.3390/w14223621. [Google Scholar]
  22. Li, W.; Tsung, F.; Song, Z.; Zhang, K.; Xiang, D. Multi-Sensor Based Landslide Monitoring via Transfer Learning. Journal of Quality Technology 2021, 53, 474–487, doi:10.1080/00224065.2021.1960936. [Google Scholar]
  23. Silva, R.; Bernardo, C.D.P.; Watanabe, C.Y. V; Da Silva, R.M.P.; Neto, J.M.D.S. Contributions of the Internet of Things in Education as Support Tool in the Educational Management Decision-Making Process. International Journal of Innovation and Learning 2020, 27, 175–196, doi:10.1504/IJIL.2020.105077. [Google Scholar]
  24. Agusty, A.I.; Alifteria, F.A.; Anggaryani, M. STEM in Disaster Learning Media: A Literature Review. In Proceedings of the Journal of Physics: Conference Series; 2021; Vol. 2110. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.