Open Access
Issue |
E3S Web Conf.
Volume 622, 2025
2nd International Conference on Environment, Green Technology, and Digital Society (INTERCONNECTS 2024)
|
|
---|---|---|
Article Number | 03009 | |
Number of page(s) | 12 | |
Section | ICT and Computer Science | |
DOI | https://doi.org/10.1051/e3sconf/202562203009 | |
Published online | 04 April 2025 |
- Kementerian Lingkungan Hidup dan Kehutanan, “Capaian Kinerja Pengelolaan Sampah,” Sistem Informasi Pengelolaan Sampah Nasional. [Online]. Available: https://sipsn.menlhk.go.id/sipsn/public/data/capaian [Google Scholar]
- B. J. Putri and G. L. Sari, “Analisis Potensi Reduksi Sampah oleh Pemulung di Tempat Pengelolaan Sampah Terpadu Bantargebang,” vol. 24, no. 3, pp. 2413–2417, 2024, doi: 10.33087/jiubj.v24i3.5524. [Google Scholar]
- S. Khansa, K. Tantri, and D. Safitri, “Ancaman Keselamatan dan Kenyamanan Lingkungan Hidup di Sekitar Area Pembuangan Sampah,” J. Ekol. Masy. dan Sains, vol. 5, no. 1, pp. 93–99, 2024, doi: 10.55448/fj76vf28. [Google Scholar]
- C. J. Schenck, P. F. Blaauw, J. M. M. Viljoen, and E. C. Swart, “Exploring the potential health risks faced by waste pickers on landfills in South Africa: A socio-ecological perspective,” Int. J. Environ. Res. Public Health, vol. 16, no. 11, 2019, doi: 10.3390/ijerph16112059. [Google Scholar]
- S. Maisharah, Z. Dwanita Widodo, and H. Manuhutu, “Penerapan Teknologi HRIS (Human Resource Information System) dalam Meningkatkan Efisiensi dan Efektivitas Manajemen SDM,” J. Pendidik. Tambusai, vol. 7, pp. 7074–7085, 2023. [Google Scholar]
- B. Sudarmanto, “Penerapan teknologi pengolahan dan pemanfaatannya dalam pengelolaan sampah,” Tek. Sipil Univ. Semarang Jl. Soekarno-Hatta Semarang, vol. 1, pp. 1–6, 2010. [Google Scholar]
- O. D. S. Sunanto and P. H. Utomo, “Implementasi Deep Learning Dengan Convolutional Neural Network Untuk Klasifikasi Gambar Sampah Organik Dan Anorganik,” Pattimura Proceeding Conf. Sci. Technol., vol. 1, no. 2, pp. 335–340, 2022, [Online]. Available: https://jurnal.uncj.ac.id/index.php/prosiding/article/view/33527 [Google Scholar]
- J. Bobulski and M. Kubanek, “Deep Learning for Plastic Waste Classification System,” Appl. Comput. Intell. Soft Comput., vol. 2021, 2021, doi: 10.1155/2021/6626948. [Google Scholar]
- N. Sihananto, M. Haromainy, A. Sari, A. Mubarrok, and D. Ramadhan, “Pemilahan Jenis Sampah Menggunakan Algoritma CNN,” Scan J. Teknol. Inf. dan Komun., vol. 17, no. 3, 2023, doi: 10.33005/scan.v17i3.3523. [Google Scholar]
- A. R. Fahcruroji, M. Yunita Wijaya, and I. Fauziah, “Implementasi Algoritma CNN Mobilenet Untuk Klasifikasi Gambar Sampah Di Bank Sampah,” PROSISKO J. Pengemb. Ris. dan Obs. Sist. Komput., vol. 11, no. 1, pp. 45–51, 2024, doi: 10.30656/prosisko.v11i1.8101. [Google Scholar]
- S. Raymond and H. Santoso, “Aplikasi Convolutional Neural Network Untuk Mendeteksi Jenis-Jenis Sampah”. [Google Scholar]
- D. Gyawali, A. Regmi, A. Shakya, A. Gautam, and S. Shrestha, “Comparative Analysis of Multiple Deep CNN Models for Waste Classification,” 2020, [Online]. Available: http ://arxiv.org/abs/2004.02168 [Google Scholar]
- Y. LeCun et al., “Backpropagation Applied to Handwritten Zip Code Recognition,” Neural Comput., vol. 1, no. 4, pp. 541–551, 1989, doi: 10.1162/neco.1989.1.4.541. [NASA ADS] [CrossRef] [Google Scholar]
- T. Developers, “TensorFlow,” May 2021, Zenodo. doi: 10.5281//enodo.4758419. [Google Scholar]
- K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2016. [Google Scholar]
- S. Showkat and S. Qureshi, “Efficacy of Transfer Learning-based ResNet models in Chest X-ray image classification for detecting COVID-19 Pneumonia,” Chemom. Intell. Lab. Syst., vol. 224, no. March, p. 104534, 2022, doi: 10.1016/j.chemolab.2022.104534. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.