Open Access
Issue
E3S Web Conf.
Volume 624, 2025
2025 11th International Conference on Environment and Renewable Energy (ICERE 2025)
Article Number 01004
Number of page(s) 7
Section Sustainable Urban Planning and Smart Infrastructure
DOI https://doi.org/10.1051/e3sconf/202562401004
Published online 08 April 2025
  1. Roy, S., Byrne, J., & Pickering, C M. A systematic quantitative review of urban tree benefits, costs, and assessment methods across cities in different climatic zones. Elsevier BV, 11(4), 351–363. https://doi.org/10.1016/j.ufug.2012.06.006 (2012). [Google Scholar]
  2. Turner, J B., & Cavender, N. The benefits of trees for livable and sustainable communities. Wiley, 1(4), 323–335. https://doi.org/10.1002/ppp3.39 (2019). [Google Scholar]
  3. Lüttge, U., & Buckeridge, M S. Trees: structure and function and the challenges of urbanization. Springer Science+Business Media, 37(1), 9–16. https://doi.org/10.1007/s00468-020-01964-1 (2020). [Google Scholar]
  4. Ordóñez, C., & Duinker, P N. Interpreting Sustainability for Urban Forests. Multidisciplinary Digital Publishing Institute, 2(6), 1510–1522. https://doi.org/10.3390/su2061510 (2010). [Google Scholar]
  5. Saleem, M H., Khanchi, S., Potgieter, J., & Arif, K M. Image-Based Plant Disease Identification by Deep Learning Meta-Architectures. Multidisciplinary Digital Publishing Institute, 9(11), 1451–1451. https://doi.org/10.3390/plants9111451 (2020). [Google Scholar]
  6. Wang, G., Sun, Y., & Wang, J. Automatic Image-Based Plant Disease Severity Estimation Using Deep Learning. Hindawi Publishing Corporation, 2017, 1–8. https://doi.org/10.1155/2017/2917536 (2017). [Google Scholar]
  7. Shi, T., Liu, Y., Zheng, X., Hu, K., Hao, H., Liu, H., & Huang, H. Recent advances in plant disease severity assessment using convolutional neural networks. Nature Portfolio, 13(1). https://doi.org/10.1038/s41598-023-29230-7 (2023). [Google Scholar]
  8. Vidal, D., & Pitarma, R. Review Infrared Thermography Applied to Tree Health Assessment: A Review, (2019). [Google Scholar]
  9. Pineda, M., Barón, M., & Pérez‐Bueno, M L. Thermal Imaging for Plant Stress Detection and Phenotyping. Multidisciplinary Digital Publishing Institute, 13(1), 68–68. https://doi.org/10.3390/rs13010068 (2020). [Google Scholar]
  10. Pitarma, R., Costa, J C W A., & Ferreira, M E. Contribution to Trees Health Assessment Using Infrared Thermography. Multidisciplinary Digital Publishing Institute, 9(8), 171–171. https://doi.org/10.3390/agriculture9080171 (2019). [Google Scholar]
  11. Catena, A., & Catena, G. Overview of thermal imaging for tree assessment. Taylor & Francis, 30(4), 259–270. https://doi.org/10.1080/03071375.2008.9747505 (2008). [Google Scholar]
  12. Xu, M., Yoon, S., Jeong, Y., & Park, D S. Transfer learning for versatile plant disease recognition with limited data. Frontiers Media, 13. https://doi.org/10.3389/fpls.2022.1010981 (2022). [Google Scholar]
  13. Gong, X., & Zhang, S. An Analysis of Plant Diseases Identification Based on Deep Learning Methods. Hanrimwon Publishing Company, 39(4), 319–334. https://doi.org/10.5423/ppj.oa.02.2023.0034 (2023). [Google Scholar]
  14. Ferentinos, K P. Deep learning models for plant disease detection and diagnosis. Elsevier BV, 145, 311–318. https://doi.org/10.1016/j.compag.2018.01.009 (2018). [Google Scholar]
  15. Foysal, M A H., Ahmed, F., & Haque, M Z. (2024, July 26). Multi-Class Plant Leaf Disease Detection: A CNN-based Approach with Mobile App Integration. Research Square (United States). https://doi.org/10.21203/rs.3.rs-4629328/v1 [Google Scholar]
  16. Bhattiprolu, S. DigitalSreeni Image Annotator [Computer software]. https://github.com/bnsreenu/digitalsreeni-image-annotator. (2024) [Google Scholar]
  17. Kirillov, Alexander, et al. “Segment anything.” Proceedings of the IEEE/CVF International Conference on Computer Vision. (2023). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.