Open Access
Issue
E3S Web Conf.
Volume 624, 2025
2025 11th International Conference on Environment and Renewable Energy (ICERE 2025)
Article Number 04004
Number of page(s) 15
Section Renewable Energy Systems and Sustainable Transitions
DOI https://doi.org/10.1051/e3sconf/202562404004
Published online 08 April 2025
  1. R. Teixeira, A. Cerveira, E. J. S. Pires, and J. Baptista, “Advancing Renewable Energy Forecasting: A Comprehensive Review of Renewable Energy Forecasting Methods,” Energies, vol. 17, p. 3480, 2024. [CrossRef] [Google Scholar]
  2. K. Barhmi, C. Heynen, S. Golroodbari, and W. van Sark, “A Review of Solar Forecasting Techniques and the Role of Artificial Intelligence,” in Solar, 2024, pp. 99–135. [CrossRef] [Google Scholar]
  3. A. Javaid, M. Sajid, E. Uddin, A. Waqas, and Y. Ayaz, “Sustainable urban energy solutions: Forecasting energy production for hybrid solar-wind systems,” Energy Conversion and Management, vol. 302, p. 118120, 2024. [CrossRef] [Google Scholar]
  4. M. AlKandari and I. Ahmad, “Solar power generation forecasting using ensemble approach based on deep learning and statistical methods,” Applied Computing and Informatics, vol. 20, pp. 231–250, 2024. [Google Scholar]
  5. A. M. Hayajneh, F. Alasali, A. Salama, and W. Holderbaum, “Intelligent Solar Forecasts: Modern Machine Learning Models & TinyML Role for Improved Solar Energy Yield Predictions,” IEEE Access, 2024. [Google Scholar]
  6. L. Massidda, F. Bettio, and M. Marrocu, “Probabilistic day-ahead prediction of PV generation. A comparative analysis of forecasting methodologies and of the factors influencing accuracy,” Solar Energy, vol. 271, p. 112422, 2024. [CrossRef] [Google Scholar]
  7. N. Thipwangmek, N. Suetrong, A. Taparugssanagorn, S. Tangparitkul, and N. Promsuk, “Enhancing Short-Term Solar Photovoltaic Power Forecasting Using a Hybrid Deep Learning Approach,” IEEE Access, 2024. [Google Scholar]
  8. R. Asghar, F. R. Fulginei, M. Quercio, and A. Mahrouch, “Artificial Neural Networks for Photovoltaic Power Forecasting: A Review of Five Promising Models,” IEEE Access, 2024. [Google Scholar]
  9. F. D. Alay, N. İlhan, and M. T. Güllüoğlu, “A Comparative Study of Data Mining Methods for Solar Radiation and Temperature Forecasting Models,” Journal of Universal Computer Science, vol. 30, p. 847, 2024. [CrossRef] [Google Scholar]
  10. Q. Liu, O. F. Darteh, M. Bilal, X. Huang, M. Attique, X. Liu, et al., “A cloud-based Bidirectional LSTM approach to grid-connected solar PV energy forecasting for multienergy systems,” Sustainable Computing: Informatics and Systems, vol. 40, p. 100892, 2023. [CrossRef] [Google Scholar]
  11. Z. Garip, E. Ekinci, and A. Alan, “Day-ahead solar photovoltaic energy forecasting based on weather data using LSTM networks: a comparative study for photovoltaic (PV) panels in Turkey,” Electrical Engineering, vol. 105, pp. 3329–3345, 2023. [CrossRef] [Google Scholar]
  12. J. Gaboitaolelwe, A. M. Zungeru, A. Yahya, C. K. Lebekwe, D. N. Vinod, and A. O. Salau, “Machine learning based solar photovoltaic power forecasting: a review and comparison,” IEEE Access, vol. 11, pp. 40820–40845, 2023. [CrossRef] [Google Scholar]
  13. T. Rajasundrapandiyanleebanon, K. Kumaresan, S. Murugan, M. Subathra, and M. Sivakumar, “Solar energy forecasting using machine learning and deep learning techniques,” Archives of Computational Methods in Engineering, vol. 30, pp. 3059–3079, 2023. [Google Scholar]
  14. A. Zameer, F. Jaffar, F. Shahid, M. Muneeb, R. Khan, and R. Nasir, “Short-term solar energy forecasting: Integrated computational intelligence of LSTMs and GRU,” Plos one, vol. 18, p. e0285410, 2023. [CrossRef] [PubMed] [Google Scholar]
  15. W.-C. Tsai, C.-S. Tu, C.-M. Hong, and W.-M. Lin, “A review of state-of-the-art and short-term forecasting models for solar pv power generation,” Energies, vol. 16, p. 5436, 2023. [CrossRef] [Google Scholar]
  16. D. K. Dhaked, S. Dadhich, and D. Birla, “Power output forecasting of solar photovoltaic plant using LSTM,” Green Energy and Intelligent Transportation, vol. 2, p. 100113, 2023. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.