Open Access
Issue
E3S Web Conf.
Volume 625, 2025
5th International Conference on Environment Resources and Energy Engineering (ICEREE 2025)
Article Number 02011
Number of page(s) 5
Section Environmental Pollution Control and Ecological Restoration
DOI https://doi.org/10.1051/e3sconf/202562502011
Published online 17 April 2025
  1. Wang, S., Ma, X., Wang, Y., Du, G., Tay, J.-H., and Li, J. (2019). Piggery wastewater treatment by aerobic granular sludge: Granulation process and antibiotics and antibiotic-resistant bacteria removal and transport. Bioresource Technology 273, 350-357 [CrossRef] [PubMed] [Google Scholar]
  2. Yu, P., Wang, D., Jin, X., Luo, D., Qian, J., and Ma, X. (2024). Rapid formation mechanism of SAD granular sludge: From flocculated activated sludge to granular sludge. Journal of Water Process Engineering 64, 105627 [CrossRef] [Google Scholar]
  3. Kosar, S., Isik, O., Akdag, Y., Gulhan, H., Koyuncu, I., Ozgun, H., and Ersahin, M.E. (2022). Impact of seed sludge characteristics on granulation and performance of aerobic granular sludge process. Journal of Cleaner Production 363, 132424 [CrossRef] [Google Scholar]
  4. Tay, J.H., Liu, Q.S., and Liu, Y. (2001). The effects of shear force on the formation, structure and metabolism of aerobic granules. Applied Microbiology and Biotechnology 57, 227-233 [CrossRef] [PubMed] [Google Scholar]
  5. Ab Halim, M.H., Nor Anuar, A., Azmi, S.I., Jamal, N.S.A., Wahab, N.A., Ujang, Z., Shraim, A., and Bob, M.M. (2015). Aerobic sludge granulation at high temperatures for domestic wastewater treatment. Bioresource Technology 185, 445-449 [CrossRef] [PubMed] [Google Scholar]
  6. Ren, C.-y., Xu, Q.-J., and Zhao, H.-P. (2023). The unique features of aerobic granule sludge contribute to simultaneous antibiotic removal and mitigation of antibiotic resistance genes enrichment. Journal of Water Process Engineering 52, 103577 [CrossRef] [Google Scholar]
  7. Klein, E.Y., Impalli, I., Poleon, S., Denoel, P., Cipriano, M., Van Boeckel, T.P., Pecetta, S., Bloom, D.E., and Nandi, A. (2024). Global trends in antibiotic consumption during 2016–2023 and future projections through 2030. Proceedings of the National Academy of Sciences 121, e2411919121 [CrossRef] [PubMed] [Google Scholar]
  8. Kayal, A., and Mandal, S. (2022). Microbial degradation of antibiotic: future possibility of mitigating antibiotic pollution. Environmental Monitoring and Assessment 194, 639 [CrossRef] [PubMed] [Google Scholar]
  9. Lin, L., Chen, S., Hou, Y., and Lei, L. (2023). Study on the formation process and mechanism of aerobic granular sludge in the sequencing batch biofilter granular reactor. Environmental Science and Pollution Research 30, 107661-107672 [CrossRef] [Google Scholar]
  10. Liu, L., Gao, D.-W., Zhang, M., and Fu, Y. (2010). Comparison of Ca2+ and Mg2+ enhancing aerobic granulation in SBR. Journal of Hazardous Materials 181, 382-387 [CrossRef] [PubMed] [Google Scholar]
  11. de Sousa Rollemberg, S.L., Mendes Barros, A.R., Milen Firmino, P.I., and Bezerra dos Santos, A. (2018). Aerobic granular sludge: Cultivation parameters and removal mechanisms. Bioresource Technology 270, 678-688 [CrossRef] [PubMed] [Google Scholar]
  12. de Kreuk, M.K., and van Loosdrecht, M.C.M. (2004). Selection of slow growing organisms as a means for improving aerobic granular sludge stability. Water Science and Technology 49, 9-17 [CrossRef] [PubMed] [Google Scholar]
  13. Vemuri, D.K., Gundla, R., Konduru, N., Mallavarapu, R., and Katari, N.K. (2022). Favipiravir (SARS-CoV-2) degradation impurities: Identification and route of degradation mechanism in the finished solid dosage form using LC/LC–MS method. Biomedical Chromatography 36, e5363 [CrossRef] [PubMed] [Google Scholar]
  14. Pan, M., and Chu, L.M. (2016). Adsorption and degradation of five selected antibiotics in agricultural soil. Science of The Total Environment 545-546, 48-56 [CrossRef] [Google Scholar]
  15. Xu, Y., Liu, Y., Liang, C., Guo, W., Ngo, H.H., and Peng, L. (2024). Favipiravir biotransformation by a side-stream partial nitritation sludge: Transformation mechanisms, pathways and toxicity evaluation. Chemosphere 353, 141580 [CrossRef] [PubMed] [Google Scholar]
  16. Xu, Y., Wang, N., Peng, L., Li, S., Liang, C., Song, K., Song, S., and Zhou, Y. (2022). Free Nitrous Acid Inhibits Atenolol Removal during the Sidestream Partial Nitritation Process through Regulating Microbial-Induced Metabolic Types. Environmental Science & Technology 56, 11614-11624 [CrossRef] [PubMed] [Google Scholar]
  17. Meng, C., Zhuo, Q., Wang, A., Liu, J., Yang, Z., and Niu, J. (2022). Efficient electrochemical oxidation of COVID-19 treatment drugs favipiravir by a novel flow-through Ti/TiO2-NTA/Ti4O7 anode. Electrochimica Acta 430, 141055 [CrossRef] [Google Scholar]
  18. Chen, S., Zhang, S.-Z., and Jiang, H. (2024). Modification of Crystal-Optimized TiO2 with Biomass-Derived Carbon Quantum Dots for Highly Efficient Degradation of Favipiravir in Water. ACS ES&T Water 4, 531-542 [CrossRef] [Google Scholar]
  19. Kuroda, K., Li, C., Dhangar, K., and Kumar, M. (2021). Predicted occurrence, ecotoxicological risk and environmentally acquired resistance of antiviral drugs associated with COVID-19 in environmental waters. Science of The Total Environment 776, 145740 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.