Open Access
Issue
E3S Web Conf.
Volume 626, 2025
International Conference on Energy, Infrastructure and Environmental Research (EIER 2025)
Article Number 03002
Number of page(s) 9
Section Environment, Infrastructure Systems and Technologies
DOI https://doi.org/10.1051/e3sconf/202562603002
Published online 15 April 2025
  1. Y. Fukui. “Fundamental investigation of functionally graded materials manufacturing system using centrifugal force”, JSME International Journal, Series 3, 34, pp. 144–148, 1991. [Google Scholar]
  2. A.C. Eringen and D. Edelen. “On nonlocal elasticity, International Journal of Engineering Science”, 10 (3), pp. 233248, 1972. [Google Scholar]
  3. A.C. Eringen. “Nonlocal Continuum Field Theories”, Springer-Verlag, New York, 2002. [Google Scholar]
  4. A.C. Eringen, “On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves”, Journal of Applied Physics, 54, pp. 4703–4710, 1983. [CrossRef] [Google Scholar]
  5. Eltaher, M.A., Emam, S.A. and Mahmoud, F.F. “Free vibration analysis of functionally graded size-dependent nanobeams”, Applied Mathematics and Computation, 218(14), pp.7406–7420, 2012. [CrossRef] [Google Scholar]
  6. M.A. Eltaher, A.E. Alshorbagy and F.F. Mahmoud. Vibration analysis of Euler–Bernoulli nanobeams by using finite element method. Applied Mathematical Modeling, 37(7), pp. 4787–4797, 2013. [CrossRef] [Google Scholar]
  7. Rahmani, O., Pedram, O., “Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory”. Int. J. Eng. Sci., 77, pp. 55–70, 2014. [CrossRef] [Google Scholar]
  8. A. Zemri, M.S.A. Houari, A.A. Bousahla, A. Tounsi, “A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory”, Struct. Eng. Mech., 54, 693–710, 2015. [CrossRef] [Google Scholar]
  9. Huu-Tai Thai, Thuc P. Vo, Trung-Kien Nguyen, Seung-Eock Kim, “A review of continuum mechanics models for size-dependent analysis of beams and plates”, Composite Structures, 177, pp. 196–219, 2017. [CrossRef] [Google Scholar]
  10. Nejad M. Z., Hadi A., “Eringen’s non-local elasticity theory for bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams”, Int. J. Eng. Sci., 106, pp. 1–9, 2016. [CrossRef] [Google Scholar]
  11. Isa Ahmadi, “Vibration analysis of 2D-functionally graded nanobeams using the nonlocal theory and meshless method”, Eng. Anal. Boundary Elem., 124, pp. 142–154, 2021. [CrossRef] [Google Scholar]
  12. Ngoc Anh Le Thi, Duc Hieu Tran, Ngoc Lan Vu Thi, An Ninh Vu Thi and Dinh Kien Nguyen. (2024). Free vibration of the bi-dimensional functionally grated (2D-FG) nanobeams, https://doi.org/10.1051/e3sconf/202449602004 [Google Scholar]
  13. Togun, N., and S. Bagdatlı. 2016. Nonlinear vibration of a nanobeam on a Pasternak elastic foundation based on non-local Euler-Bernoulli beam theory. Mathematical and Computational Applications 21 (1):3. [CrossRef] [Google Scholar]
  14. Demir, C¸. 2016. Nonlocal vibration analysis for micro/nano beam on Winkler foundation via DTM. International Journal of Engineering & Applied Sciences 8 (4):108–18. [CrossRef] [Google Scholar]
  15. Büşra Uzun, Ömer Civalek and Mustafa Özgür Yaylı, 2020. Vibration of FG nano-sized beams embedded in Winkler elastic foundation and with various boundary conditions, Mechanics Based Design of Structures and Machines, 481–500, https://doi.org/10.1080/15397734.2020.1846560 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.