Open Access
Issue
E3S Web Conf.
Volume 628, 2025
2025 7th International Conference on Environmental Prevention and Pollution Control Technologies (EPPCT 2025)
Article Number 01021
Number of page(s) 5
Section Research on the Characterization and Remediation Technologies of Environmental Pollutants
DOI https://doi.org/10.1051/e3sconf/202562801021
Published online 16 May 2025
  1. Jiang H B, Hutchins D A, Zhang H R, et al. Complexities of regulating climate by promoting marine primary production with ocean iron fertilization [J]. Earth-Science Reviews, 2024, 249: 104675. [CrossRef] [Google Scholar]
  2. Chien C T, Mackey K R M, Dutkiewicz S, et al. Effects of African dust deposition on phytoplankton in the western tropical Atlantic Ocean off Barbados [J]. Global Biogeochemical Cycles, 2016, 30(5): 716–734. [CrossRef] [Google Scholar]
  3. Zhang C, Chu Q, Yingchun M, et al. Weakened fertilization impact of anthropogenic aerosols on marine phytoplankton—A comparative analysis of dust and haze particles [J]. Ecotoxicology and Environmental Safety, 2022, 230: 113162. [CrossRef] [PubMed] [Google Scholar]
  4. Guo J, Selby K, Boxall ABA. Effects of Antibiotics on the Growth and Physiology of Chlorophytes, Cyanobacteria, and a Diatom[J]. Archives of environmental contamination and toxicology, 2016, 71: 589–602. [CrossRef] [PubMed] [Google Scholar]
  5. Su Y, Qi H, Hou Y, et al. Combined effects of microplastics and benzo [a] pyrene on the marine diatom Chaetoceros muelleri[J]. Frontiers in Marine Science, 2022, 8: 779321. [CrossRef] [Google Scholar]
  6. Fu X, Sun J, Wei Y, et al. Seasonal shift of a phytoplankton (> 5 µm) community in Bohai Sea and the adjacent Yellow Sea[J]. Diversity, 2021, 13(2): 65. [CrossRef] [Google Scholar]
  7. Del Vento S, Dachs J. Influence of the surface microlayer on atmospheric deposition of aerosols and polycyclic aromatic hydrocarbons [J]. Atmospheric Environment, 2007, 41(23): 4920–4930. [CrossRef] [Google Scholar]
  8. Del Vento S, Dachs J. Prediction of uptake dynamics of persistent organic pollutants by bacteria and phytoplankton [J]. Environmental Toxicology and Chemistry, 2002, 21(10): 2099–2107 [CrossRef] [PubMed] [Google Scholar]
  9. Echeveste P, Galbán-Malagón C, Dachs J, et al. Toxicity of natural mixtures of organic pollutants in temperate and polar marine phytoplankton[J]. Science of The Total Environment, 2016, 571: 34–41. [CrossRef] [Google Scholar]
  10. Lehr R E, Jerina D M. Metabolic activations of polycyclic hydrocarbons: structure-activity relationships [J]. Archives of Toxicology, 1977, 39: 1–6. [CrossRef] [PubMed] [Google Scholar]
  11. Boström C E, Gerde P, Hanberg A, et al. Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air[J]. Environmental health perspectives, 2002, 110(suppl 3): 451–488. [PubMed] [Google Scholar]
  12. Cerezo M I, Agustí S. PAHs reduce DNA synthesis and delay cell division in the widespread primary producer Prochlorococcus[J]. Environmental Pollution, 2015, 196: 147–155 [CrossRef] [Google Scholar]
  13. Gelboin H V. Benzo [alpha] pyrene metabolism, activation and carcinogenesis: role and regulation of mixed-function oxidases and related enzymes[J]. Physiological reviews, 1980, 60(4): 1107–1166. [CrossRef] [PubMed] [Google Scholar]
  14. Asghari S, Rajabi F, Tarrahi R, et al. Potential of the green microalga Chlorella vulgaris to fight against fluorene contamination: evaluation of antioxidant systems and identification of intermediate biodegradation compounds [J]. Journal of applied phycology, 2020, 32: 411–419. [CrossRef] [Google Scholar]
  15. Croxton A N, Wikfors G H, Schulterbrandt-Gragg R D III. The use of flow cytometric applications to measure the effects of PAHs on growth, membrane integrity, and relative lipid content of the benthic diatom, Nitzschia brevirostris[J]. Marine Pollution Bulletin, 2015, 91(1): 160–165. [CrossRef] [PubMed] [Google Scholar]
  16. Kottuparambil S, Agusti S. PAHs sensitivity of picophytoplankton populations in the Red Sea[J]. Environmental pollution, 2018, 239: 607–616. [CrossRef] [Google Scholar]
  17. Samburova V, Zielinska B, Khlystov A D. polycyclic aromatic hydrocarbons represent PAH air toxicity? Toxics. 2017; 5: 3[EB/OL].(16) [CrossRef] [Google Scholar]
  18. Wang C, Thakuri B, Roy A K, et al. Phase partitioning effects on seasonal compositions and distributions of terrigenous polycyclic aromatic hydrocarbons along the South China Sea and East China Sea [J]. Science of the Total Environment, 2022, 828: 154430. [CrossRef] [Google Scholar]
  19. Yamada M, Takada H, Toyoda K, et al. Study on the fate of petroleum-derived polycyclic aromatic hydrocarbons (PAHs) and the effect of chemical dispersant using an enclosed ecosystem, mesocosm[J]. Marine pollution bulletin, 2003, 47(1-6): 105–113. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.