Open Access
Issue
E3S Web Conf.
Volume 628, 2025
2025 7th International Conference on Environmental Prevention and Pollution Control Technologies (EPPCT 2025)
Article Number 02007
Number of page(s) 5
Section Exploration of Dynamic Changes in Environmental Ecosystems and Protection Strategies
DOI https://doi.org/10.1051/e3sconf/202562802007
Published online 16 May 2025
  1. Fatichi S, Vivoni E R, Ogden F L, et al. (2016) An overview of current applications, challenges, and future trends in distributed process-based models in hydrology. J. Hydrol., 537: 45–60. [CrossRef] [Google Scholar]
  2. Lewis J W, Lytle S E and Tavakoly A A (2023) Climate change projections of continental-scale streamflow across the Mississippi River Basin. Theor. Appl. Climatol., 151: 1013–1034. [CrossRef] [Google Scholar]
  3. Abdulla F A, Lettenmaier D P, Wood E F, et al. (1996) Application of a macroscale hydrologic model to estimate the water balance of the Arkansas-Red River Basin. J. Geophys. Res., 101: 7449–7459. [CrossRef] [Google Scholar]
  4. Mao Y, Crow W T and Nijssen B (2020) Dual state/rainfall correction via soil moisture assimilation for improved streamflow simulation: evaluation of a large-scale implementation with Soil Moisture Active Passive (SMAP) satellite data. Hydrol. Earth Syst. Sci., 24: 615–631. [CrossRef] [Google Scholar]
  5. Lu G, Zhang J, Wu Z, et al. (2013) Parameter gridding formulas of VIC model in southern region of China and effect verification. Water Resour. Power, 5: 13–17. [Google Scholar]
  6. Duan Q (1991) A global optimization strategy for efficient and effective calibration of hydrologic models. The University of Arizona. [Google Scholar]
  7. Song X, Shu Q, Wang H, et al. (2009) Comparison and application of SCE-UA, genetic algorithm and simplex method. Eng. J. Wuhan Univ., 42(1). [Google Scholar]
  8. Jeon J-H, Park C-G and Engel B A (2014) Comparison of performance between genetic algorithm and SCE-UA for calibration of SCS-CN surface runoff simulation. Water, 6(11): 3433–3456. [CrossRef] [Google Scholar]
  9. Liang X and Xie Z (2001) A new surface runoff parameterization with subgrid-scale soil heterogeneity for land surface models. Adv. Water Resour., 24(9): 1173–1193. [CrossRef] [Google Scholar]
  10. Lohmann D, Nolte-Holube R and Raschke E (1996) A large-scale horizontal routing model to be coupled to land surface parameterization schemes. Tellus A, 48(5): 708–721. [CrossRef] [Google Scholar]
  11. Workneh, H. T., Chen, X., Ma, Y., Bayable, E., & Dash, A. Comparison of IDW, Kriging and orographic based linear interpolations of rainfall in six rainfall regimes of Ethiopia. Journal of Hydrology: Regional Studies, 52, 101696 (2024). [CrossRef] [Google Scholar]
  12. Griensven A V, Meixner T, Grunwald S, et al. (2006) A global sensitivity analysis tool for the parameters of multi-variable catchment models. J. Hydrol., 324(1-4): 10–23. [CrossRef] [Google Scholar]
  13. Nash J E and Sutcliffe J V (1970) River flow forecasting through conceptual models part I — A discussion of principles. J. Hydrol., 10(3): 282–290. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.