Open Access
Issue |
E3S Web Conf.
Volume 630, 2025
2025 International Conference on Eco-environmental Protection, Environmental Monitoring and Remediation (EPEMR 2025)
|
|
---|---|---|
Article Number | 01015 | |
Number of page(s) | 6 | |
Section | Smart Technologies for Environmental Monitoring and Pollution Mitigation | |
DOI | https://doi.org/10.1051/e3sconf/202563001015 | |
Published online | 22 May 2025 |
- Sun B. Liquid phase discharge plasma and its applications [M]. Ke xue chu ban she, 2013. [Google Scholar]
- Mei Danhua, Fang Zhi, Shao Tao. Research Status of Atmospheric Pressure Low Temperature Plasma Characteristics and Application[J]. Proceedings of the CSEE, 2020, 40(4): 1339-1358 [Google Scholar]
- Carbone E, Graef W, Hagelaar G, et al. Data needs for modeling low-temperature non-equilibrium plasmas: the LXCat project, history, perspectives and a tutorial[J]. Atoms, 2021, 9(1): 16. [CrossRef] [Google Scholar]
- Fridman A, Kennedy L A. Plasma physics and engineering[M]. CRC Press, 2004. [Google Scholar]
- Oliveira M, Ramos A, Ismail TM et al. A review of solid residue plasma gasification: recent advances and developments [J]. Energy, 2022, 15(4): 1475. [Google Scholar]
- Lv Z, Xie S, Li Y, et al. Building the metaverse using digital twins at all scales, states, and relations[J]. Virtual Reality & Intelligent Hardware, 2022, 4(6): 459-470. [CrossRef] [Google Scholar]
- SUN Xiaoling, BAO Jianjun, LI Kai et al. Progress in the preparation of carbon-based materials modified by plasma technology and their applications in the fields of environment, materials and energy[J]. Advanced Functional Materials, 2021, 31(7): 2006287. [CrossRef] [Google Scholar]
- Gururani P, Bhatnagar P, Bisht B et al. Cold plasma technology: an advanced and sustainable approach to wastewater treatment[J]. Environmental Science and Pollution Research, 2021:1-21. [Google Scholar]
- Stryczewska HD, Boiko O. Plasma generated by gas discharge for agricultural and biomedical applications [J]. Applied Science, 2022, 12(9): 4405. [CrossRef] [Google Scholar]
- Dai Dong, Ning Wenjun, Shao Tao. Research Status and Development Trend of Atmospheric Pressure Low Temperature Plasma[J]. Transactions of China Electrotechnical Society, 2017, 32(20): 1-9. [Google Scholar]
- GUO Hua, PAN Shao, HU Zhe et al. Progress in the degradation of organic pollutants by low-temperature plasma-activated persulfate[J]. Journal of Chemical Engineering, 2023, 470: 144094. [CrossRef] [Google Scholar]
- LIU Chen, TAN Ling, ZHANG Ling, et al. Distribution of antibiotics in water from different regions of China and current antibiotic degradation pathways[J]. Frontiers of Environmental Science, 2021, 9: 692298. [CrossRef] [Google Scholar]
- Gao Yan, Wang Qian, Ji Gang, et al. Degradation of antibiotic contaminants by activated persulfate with different carbon materials[J]. Journal of Chemical Engineering, 2022, 429: 132387. [CrossRef] [Google Scholar]
- Ren H, Qi F, Labidi A et al. Chemically bonded carbon quantum dots/Bi2WO6 S-type heterojunctions for enhanced photocatalytic antibiotic degradation: interfacial engineering and mechanistic insight[J]. Applied Catalysis B: Environment, 2023, 330: 122587. [CrossRef] [Google Scholar]
- YANG Qian, GAO Yan, KE Jing, et al. Antibiotics: an overview of presence, toxicity, degradation and removal methods in the environment[J]. Bioengineering, 2021, 12(1): 7376-7416. [Google Scholar]
- Cao Zhe, Yan Wei, Ding Mei, et al. Construction of microflora for microbial degradation of complex compounds[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10: 1051233. [CrossRef] [Google Scholar]
- Singh, A.K.; Chowdhary, P.; Raj, A. In silico bioremediation strategies for removal of environmental pollutants released from paper mills using bacterial ligninolytic enzymes. Microorg. Sustain. Environ. Health 2020, 249–285. [Google Scholar]
- Su Jianqiang, Huang Fuyi, Zhu Yongguan. Research Progress on Environmental Antibiotic Resistance Genes[J]. Biodiversity Science, 2013, 21(4): 481. [Google Scholar]
- Magureanu, M.; Piroi, D.; Mandache, N.; David, V.; Medvedovici, A.; Bradu, C.; Parvulescu, V. Degradation of antibiotics in water by non-thermal plasma treatment. Water Res. 2011, 45, 3407–3416. [CrossRef] [Google Scholar]
- Zhang, Q.; Zhang, H.; Zhang, Q.; Huang, Q. Degradation of norfloxacin in aqueous solution by atmospheric-pressure non-thermal plasma: Mechanism and degradation pathways. Chemosphere 2018, 210, 433–439. [CrossRef] [PubMed] [Google Scholar]
- Kim, K.-S.; Yang, C.-S.; Mok, Y. Degradation of veterinary antibiotics by dielectric barrier discharge plasma. Chem. Eng. J. 2013,219, 19–27. [CrossRef] [Google Scholar]
- Aggelopoulos, C.A.; Meropoulis, S.; Hatzisymeon, M.; Lada, Z.G.; Rassias, G. Degradation of antibiotic enrofloxacin in water by gas-liquid nsp-DBD plasma: Parametric analysis, effect of H2O2 and CaO2 additives and exploration of degradation mechanisms. Chem. Eng. J. 2020, 398, 125622. [CrossRef] [Google Scholar]
- Sarangapani, C.; Ziuzina, D.; Behan, P.; Boehm, D.; Gilmore, B.F.; Cullen, P.J.; Bourke, P. Degradation kinetics of cold plasma treated antibiotics and their antimicrobial activity. Sci. Rep. 2019, 9, 3955. [CrossRef] [Google Scholar]
- El Shaer, M.; Eldaly, M.; Heikal, G.; Sharaf, Y.; Diab, H.; Mobasher, M.; Rousseau, A. Antibiotics degradation and bacteria inactivation in water by cold atmospheric plasma discharges above and below the water surface. Plasma Chem. Plasma Process. 2020, 40, 971–983. [CrossRef] [Google Scholar]
- Nguyen, P.T.T.; Nguyen, H.T.; Tran, U.N.P.; Bui, H.M. Removal of Antibiotics from Real Hospital Wastewater by Cold Plasma. Technique. J. Chem. 2021, 2021, 9981738. [Google Scholar]
- Vidal-Limon A, Aguilar-Toalá JE, Liceaga A M. Molecular docking analysis combined with molecular dynamics simulation for the study of food proteins and bioactive peptides[J]. Journal of Agricultural and Food Chemistry, 2022, 70(4): 934-943. [CrossRef] [PubMed] [Google Scholar]
- Liu Qian, Liu Sha, Lu Yan et al. Atomic-scale insight into polycarbonate pyrolysis from ReaxFF-based reactive molecular dynamics simulations[J]. Fuel, 2021, 287: 119484. [CrossRef] [Google Scholar]
- Wang, H.; Zhao, T.; Zou, L.; Wang, X.; Zhang, L.; Yi, X. ReaxFF-Based Molecular Dynamics Simulation of Polymethylmethacrylate Surface Modification by ROS in Plasma. In Proceedings of the 2021 IEEE 4th International Electrical and Energy Conference (CIEEC), Wuhan, China, 28–30 May 2021. [Google Scholar]
- Neyts, E.C.; Brault, P. Molecular Dynamics Simulations for Plasma-Surface Interactions. Plasma Process. Polym. 2017, 14, 1066145. [Google Scholar]
- Adamovich I, Agarwal S, Ahedo E et al. Plasma roadmap 2022: low temperature plasma science and technology[J]. Journal of Physics D: Applied Physics, 2022, 55(37): 373001. [CrossRef] [Google Scholar]
- LI Wei, HU Xiaolong, DUAN Huigao, et al. Analysis on the current status of low-temperature plasma and composite processing technology for hard and brittle component surfaces[J]. Journal of Mechanical Engineering, 2024, 60(23): 246-261. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.