Open Access
Issue
E3S Web Conf.
Volume 631, 2025
6th International Conference on Multidisciplinary Design Optimization and Applications (MDOA 2024)
Article Number 02009
Number of page(s) 5
Section Materials and Optimal Design
DOI https://doi.org/10.1051/e3sconf/202563102009
Published online 26 May 2025
  1. Y. Chung & Y.-P. Yang, Hardware-in-the-Loop Simulation of Self-Driving Electric Vehicles by Dynamic Path Planning and Model Predictive Control. Electronics, 10 (2021) 2447. [CrossRef] [Google Scholar]
  2. J. Friedman, MATLAB/Simulink for Automotive Systems Design. Proceedings of the Design Automation & Test in Europe Conference (IEEE, 2006), pp. 1–2. [Google Scholar]
  3. K.-L. Lu & Y.-Y. Chen, ISO 26262 ASIL-Oriented Hardware Design Framework for Safety-Critical Automotive Systems. 2019 IEEE International Conference on Connected Vehicles and Expo (ICCVE) (IEEE, 2019), pp. 1–6. [Google Scholar]
  4. M. Abboush, C. Knieke, & A. Rausch, A virtual testing framework for real-time validation of automotive software systems based on hardware in the loop and fault injection. Sensors (Basel, Switzerland), 24 (2024) 3733. [CrossRef] [PubMed] [Google Scholar]
  5. H. Pikner, R. Sell, J. Majak, & K. Karjust, Safety System Assessment Case Study of Automated Vehicle Shuttle. Electronics, 11 (2022) 1162. [CrossRef] [Google Scholar]
  6. K. Wang, Z. Gong, Y. Hou, M. Zhang, C. Liu, & R. Chen, Model Based Design and Procedure of Flight Control System for Unmanned Aerial Vehicle. 2020 3rd International Conference on Unmanned Systems (ICUS) (IEEE, 2020), pp. 763–768. [Google Scholar]
  7. B. R. Mudhivarthi, V. Saini, A. Dodia, P. Shah, & R. Aravind Sekhar, Model based design in automotive open system architecture. (2023), pp. 1211–1216. [Google Scholar]
  8. R. Hýl & R. Wagnerová, Fast development of controllers with Simulink Coder. 2017 18th International Carpathian Control Conference (ICCC) (IEEE, 2017), pp. 406–411. [Google Scholar]
  9. M. Malayjerdi, B. C. Baykara, R. Sell, & E. Malayjerdi, Autonomous vehicle safety evaluation through a high-fidelity simulation approach. Proceedings of The Estonian Academy of Sciences, 70 (2021) 413. [CrossRef] [Google Scholar]
  10. R. Razdan, M. İ. Akbaş, R. Sell, M. Bellone, M. Menase, & M. Malayjerdi, PolyVerif: An Open-Source Environment for Autonomous Vehicle Validation and Verification Research Acceleration. IEEE Access, 11 (2023) 28343–28354. [CrossRef] [Google Scholar]
  11. H. A. Al-Fedhly & W. ElMaraghy, Design methodology framework for cyber-physical products. International Journal of Industry and Sustainable Development, 1 (2020) 64–75. [CrossRef] [Google Scholar]
  12. H. Pikner, R. Sell, K. Karjust, E. Malayjerdi, & T. Velsker, Cyber-physical Control System for Autonomous Logistic Robot. 2021 IEEE 19th International Power Electronics and Motion Control Conference (PEMC) (IEEE, 2021), pp. 699–704. [Google Scholar]
  13. T. Raamets, J. Majak, K. Karjust, K. Mahmood, & A. Hermaste, Development of process optimization model for autonomous mobile robot used in production logistics. (2024). https://doi.org/10.1063/5.0189299. [Google Scholar]
  14. R. Sell, M. Malayjerdi, H. Pikner, R. Razdan, E. Malayjerdi, & M. Bellone, Open-source level 4 autonomous shuttle for last - mile mobility. 2024 IEEE 29th International Conference on Emerging Technologies and Factory Automation (ETFA) (IEEE, 2024), pp. 01–06. [Google Scholar]
  15. R. Sell, R.-M. Soe, R. Wang, & A. Rassõlkin, Autonomous Vehicle Shuttle in Smart City Testbed. Intelligent System Solutions for Auto Mobility and Beyond (Springer International Publishing, 2021), pp. 143–157. [Google Scholar]
  16. L. Caltagirone, M. Bellone, L. Svensson, M. Wahde, & R. Sell, Lidar-camera semi-supervised learning for semantic segmentation. Sensors (Basel, Switzerland), 21 (2021) 4813. [CrossRef] [PubMed] [Google Scholar]
  17. E. Malayjerdi, R. Sell, M. Malayjerdi, A. Udal, & M. Bellone, Practical path planning techniques in overtaking for autonomous shuttles. Journal of field robotics, 39 (2022) 410–425. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.