Open Access
Issue |
E3S Web Conf.
Volume 632, 2025
The 5th Edition of Oriental Days for the Environment “Green Lab. Solution for Sustainable Development” (JOE5)
|
|
---|---|---|
Article Number | 01028 | |
Number of page(s) | 7 | |
Section | Natural Resources, Earth & Environmental Studies | |
DOI | https://doi.org/10.1051/e3sconf/202563201028 | |
Published online | 03 June 2025 |
- V. Masson-Delmotte, P. Zhai, A. Pirani, et al., Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Clim. Change, 2(1), 2391 (2021). https://doi.org/10.1017/9781009157896 [Google Scholar]
- P. Friedlingstein, M. O'Sullivan, M. W. Jones, et al., Global carbon budget 2022. Earth Syst. Sci. Data 14, 4811-4900 (2022). https://doi.org/10.5194/essd-14-4811-2022 [CrossRef] [Google Scholar]
- R. Kholssi, O. Riouchi, H. Douhri, et al., Microalgae as a sustainable energy source: Growth and lipids production of Nitzschia sp., Nannochloropsis sp., and Tetraselmis sp. from Mediterranean seawater. Biocatal. Agric. Biotechnol. 50, 102720 (2023). https://doi.org/10.1016/j.bcab.2023.102720 [CrossRef] [Google Scholar]
- O. Riouchi, R. Kholssi, A. Skalli, M. Akodad, A. Moumen, M. Baghour, Effect of physicochemical parameters on the growth of two microalgae strains, Chlorella vulgaris and Skeletonema costatum isolated from different sites in the Nador Lagoon. Biocatal. Agric. Biotechnol. 57, 103088 (2024). https://doi.org/10.1016/j.bcab.2024.103088 [Google Scholar]
- Y. Chisti, Biodiesel from microalgae. Biotechnol. Adv. 25(3), 294-306 (2021). https://doi.org/10.1016/j.biotechadv.2007.02.001 [CrossRef] [Google Scholar]
- J. Singh, S. Gu, Commercialization potential of microalgae for biofuels production. Renew. Sustain. Energy Rev. 14(9), 2596-2610(2010). https://doi.org/10.1016/j.rser.2010.07.005 [CrossRef] [Google Scholar]
- L. Kumar, N. Bharadvaja, Biosynthesis, characterization, and evaluation of antibacterial and photocatalytic dye degradation activities of silver nanoparticles biosynthesized by Chlorella sorokiniana. Biomass Convers. Biorefinery 1-11 (2022). https://doi.org/10.1007/s13399-022-02938-5 [Google Scholar]
- P. Gao, L. Guo, Y. Zhao, et al., Enhancing microalgae growth and product accumulation with carbon source regulation: New perspective for the coordination between photosynthesis and aerobic respiration. Chemosphere 278, 130435 (2021). https://doi.org/10.1016/j.chemosphere.2021.130435 [CrossRef] [PubMed] [Google Scholar]
- E.G. Nwoba, T. Rohani, M. Raeisossadati, A. Vadiveloo, P.A. Bahri, N.R. Moheimani, Monochromatic light filters to enhance biomass and carotenoid productivities of Dunaliella salina in raceway ponds. Bioresour. Technol. 340, 125689 (2021). https://doi.org/10.1016/j.biortech.2021.125689 [CrossRef] [Google Scholar]
- M. Zieliński, M. Dębowski, J. Kazimierowicz, I. Świca, Microalgal carbon dioxide (CO₂) capture and utilization from the European Union perspective. Energies 16(3), 1446 (2023). https://doi.org/10.3390/en16031446 [CrossRef] [Google Scholar]
- D. Liu, H. Wang, Y. Teng, Q. Wu, C. Tang, X. Gao, et al., Biochemical responses of freshwater microalgae Chlorella sorokiniana to combined exposure of Zn (Ⅱ) and estrone with simultaneous pollutants removal. J. Environ. Manag. 348, 119392 (2023). https://doi.org/10.1016/j.jenvman.2023.119392 [CrossRef] [Google Scholar]
- L. Zhang, X. Huang, W. Chen, et al., Microalgae-assisted heterotrophic nitrification-aerobic denitrification process for cost-effective nitrogen and phosphorus removal from high-salinity wastewater: performance, mechanism, and bacterial community. Bioresour. Technol. 390, 129901 (2023). https://doi.org/10.1016/j.biortech.2023.129901 [CrossRef] [Google Scholar]
- C.Y. Tong, K. Honda, C.J.C. Derek, A review on microalgal-bacterial co-culture: The multifaceted role of beneficial bacteria towards enhancement of microalgal metabolite production. Environ. Res. 228, 115872 (2023). https://doi.org/10.1016/j.envres.2023.115872 [CrossRef] [Google Scholar]
- Z. Xie, J. He, S. Peng, et al., Biosynthesis of protein-based drugs using eukaryotic microalgae. Algal Res. 2023, 103219 (2023). https://doi.org/10.1016/j.algal.2023.103219 [CrossRef] [Google Scholar]
- Z. Sun, H. Chen, L. Sun, et al., Converting carbon dioxide to high value‐added products: Microalgae‐based green biomanufacturing. GCB Bioenergy 15(4), 386-398 (2023). https://doi.org/10.1111/gcbb.13010 [CrossRef] [Google Scholar]
- X. Zhang, L. An, J. Tian, et al., Microalgal capture of carbon dioxide: A carbon sink or source? Bioresour. Technol. 2023, 129824. https://doi.org/10.1016/j.biortech.2023.129824 [Google Scholar]
- P. Wang, Z. Liu, Z. Pan, J. González-Arias, L. Shang, Y. Wang, Z. Zhang, Advances in life cycle assessment of chemical absorption-based carbon capture technologies. Sep. Purif. Technol. 127252 (2024). https://doi.org/10.1016/j.seppur.2024.127252 [Google Scholar]
- A.Y. Goren, D. Erdemir, I. Dincer, Comprehensive review and assessment of carbon capturing methods and technologies: An environmental research. Environ. Res. 240, 117503 (2024). https://doi.org/10.1016/j.envres.2024.11750 [CrossRef] [Google Scholar]
- A. Sori, J. Moghaddas, H. Abedpour, Comprehensive review of experimental studies, numerical modeling, leakage risk assessment, monitoring, and control in geological storage of carbon dioxide: Implications for effective CO2 deployment strategies. Greenhouse Gases: Sci. Technol. 14(5), 887-913 (2024). https://doi.org/10.1002/ghg.3381 [CrossRef] [Google Scholar]
- A. Bashir, M. Ali, S. Patil, et al., Comprehensive review of CO2 geological storage: Exploring principles, mechanisms, and prospects. Earth Sci. Rev. 104672 (2024). https://doi.org/10.1016/j.earscirev.2024.104672 [Google Scholar]
- M. Chakraborty, U.K. Vandana, D. Nandi, et al., Rapidly Changing Environment and Role of Microbiome in Restoring and Creating Sustainable Approaches. In: Climate Change and Microbial Diversity, Apple Academic Press, 2022, 237-278. [Google Scholar]
- S. Pérez-de la Cruz, B.A. Ascencio-Priego, M.A. Petriz-Prieto, et al., Environmental impact assessment in microalgal lipid production: carbon footprint and net emissions. Renew. Energy, Biomass & Sustainability 6(2), 43-50 (2024). https://doi.org/10.1016/j.rebsus.2024.03.003 [Google Scholar]
- M. Narayanan, Marine algae biomass: A viable and renewable resource for biofuel production: A review. Algal Res. 103687 (2024). https://doi.org/10.1016/j.algal.2024.103687 [Google Scholar]
- G. Zieliński, A. Matysik-Woźniak, M. Baszczowski, M. Rapa, M. Ginszt, B. Pająk, et al., Myopia & painful muscle form of temporomandibular disorders: Connections between vision, masticatory and cervical muscles activity and sensitivity and sleep quality. Sci. Rep. 13(1), 20231 (2023). https://doi.org/10.1038/s41598-023-28004-4 [CrossRef] [Google Scholar]
- S. Sahu, P. Kunj, A. Kaur, M. Khatri, G. Singh, S.K. Arya, Catalytic strategies for algal-based carbon capture and renewable energy: A review on a sustainable approach. Energy Convers. Manag. 310, 118467 (2024). https://doi.org/10.1016/j.enconman.2024.118467 [CrossRef] [Google Scholar]
- M. Mujtaba, L.F. Fraceto, M. Fazeli, S. Mukherjee, S.M. Savassa, G.A. de Medeiros, et al., Lignocellulosic biomass from agricultural waste to the circular economy: A review with focus on biofuels, biocomposites and bioplastics. J. Clean. Prod. 402, 136815 (2023). https://doi.org/10.1016/j.jclepro.2023.136815 [CrossRef] [Google Scholar]
- B.S. Yu, S. Pyo, J. Lee, et al., Microalgae: A multifaceted catalyst for sustainable solutions in renewable energy, food security, and environmental management. Microb. Cell Fact. 23(1), 308 (2024). https://doi.org/10.1186/s12934-024-02155-w [CrossRef] [Google Scholar]
- M. Talaei, A. Prieto, A review on performance of sustainable microalgae photobioreactor façades technology: Exploring challenges and advantages. Arch. Sci. Rev. 1-28 (2024). https://doi.org/10.1080/123456789 [Google Scholar]
- S. Chen, X. Li, X. Ma, et al., Lighting the way to sustainable development: Physiological response and light control strategy in microalgae-based wastewater treatment under illumination. Sci. Total Environ. 166298 (2023). https://doi.org/10.1016/j.scitotenv.2023.166298 [Google Scholar]
- S. Fal, A. Smouni, H. El Arroussi, Integrated microalgae-based biorefinery for wastewater treatment, industrial CO2 sequestration and microalgal biomass valorization: A circular bioeconomy approach. Environ. Adv. 12, 100365 (2023). https://doi.org/10.1016/j.envadv.2023.100365 [CrossRef] [Google Scholar]
- J.B. Moreira, T.D. Santos, J.H. Duarte, P.Q.M. Bezerra, M.G. de Morais, J.A.V. Costa, Role of microalgae in circular bioeconomy: From waste treatment to biofuel production. Clean Technol. Environ. Policy 25(2), 427-437 (2023). https://doi.org/10.1007/s10098-023-02456-7 [Google Scholar]
- S. Sahu, P. Kunj, A. Kaur, M. Khatri, G. Singh, S.K. Arya, Catalytic strategies for algal-based carbon capture and renewable energy: A review on a sustainable approach. Energy Convers. Manag. 310, 118467 (2024). https://doi.org/10.1016/j.enconman.2024.118467 [CrossRef] [Google Scholar]
- L.J. Nunes, Exploring the present and future of biomass recovery units: Technological innovation, policy incentives, and economic challenges. Biofuels 15(4), 375-387 (2024). https://doi.org/10.1080/17597269.2024.1812345 [CrossRef] [Google Scholar]
- R. Sen, S. Mukherjee, Recent advances in microalgal carbon capture and utilization (bio-CCU) process vis-à-vis conventional carbon capture and storage (CCS) technologies. Crit. Rev. Environ. Sci. Technol. 54(24), 1777-1802 (2024). https://doi.org/10.1080/10643389.2024.1812349 [CrossRef] [Google Scholar]
- A.P. Abreu, R. Martins, J. Nunes, Emerging applications of Chlorella sp. and Spirulina (Arthrospira) sp. Bioengineering 10(8), 955 (2023). https://doi.org/10.3390/bioengineering10080955 [CrossRef] [PubMed] [Google Scholar]
- A. Sahu, P. K. Das, S. Meher, An efficient deep learning scheme to detect breast cancer using mammogram and ultrasound breast images. Biomed. Signal Process. Control 87, 105377 (2024). https://doi.org/10.1016/j.bspc.2023.105377 [CrossRef] [Google Scholar]
- S. Nunes Pires, S. Bigolin Teixeira, B. E. Paschoal Silva, G. E. Ávila, C. H. Thiel, A. C. Rossi, Impact of elevated CO2 concentration on carbon and nitrogen metabolism of irrigated rice plants. J. Plant Nutr. 47(10), 1613–1629 (2024). https://doi.org/10.1080/01904167.2024.2316004. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.