Open Access
Issue
E3S Web Conf.
Volume 632, 2025
The 5th Edition of Oriental Days for the Environment “Green Lab. Solution for Sustainable Development” (JOE5)
Article Number 01030
Number of page(s) 15
Section Natural Resources, Earth & Environmental Studies
DOI https://doi.org/10.1051/e3sconf/202563201030
Published online 03 June 2025
  1. S. Hubert, “Transitions de phases solides induites par un procédé de compression directe : application à la caféine et à la carbamazépine To cite this version : HAL Id : tel-00903563 Tran nsitions de pha ses solid des ind uites pa ar un pr rocédé de com mpress ion di,” Univ. Claude Bernard, (2013). [Google Scholar]
  2. A. Baratloo, A. Rouhipour, M. M. Forouzanfar, S. Safari, M. Amiri, and A. Negida, “The Role of Caffeine in Pain Management : A Brief Literature Review,” vol. 6, no. 3 (2016). https://doi.org/10.5812/aapm.33193.Review. [Google Scholar]
  3. L. Youcef, A. B. D. El, K. Ouakouak, and S. Achour, “ELIMINATION DE POLLUANTS MINERAUX ET ORGANIQUES DES,” vol. 2011, pp. 470–474, (2011). [Google Scholar]
  4. N. Taoufik, W. Boumya, M. Achak, M. Sillanpää, and N. Barka, “Comparative overview of advanced oxidation processes and biological approaches for the removal pharmaceuticals,” J. Environ. Manage., vol. 288, no. February, (2021). https://doi.org/10.1016/j.jenvman.2021.112404 [CrossRef] [Google Scholar]
  5. M. Farhadian, C. Vachelard, D. Duchez, and C. Larroche, “In situ bioremediation of monoaromatic pollutants in groundwater: A review,” Bioresour. Technol., vol. 99, no. 13, pp. 5296–5308 (2008). https://doi.org/10.1016/j.biortech.2007.10.025 [CrossRef] [Google Scholar]
  6. D. I. De Souza, E. M. Dottein, A. Giacobbo, M. A. Siqueira Rodrigues, M. N. De Pinho, and A. M. Bernardes, “Nanofiltration for the removal of norfloxacin from pharmaceutical effluent,” J. Environ. Chem. Eng., vol. 6, no. 5, pp. 6147–6153 (2018). https://doi.org/10.1016/j.jece.2018.09.034 [CrossRef] [Google Scholar]
  7. A. Gil et al., “Effect of dopants on the structure of titanium oxide used as a photocatalyst for the removal of emergent contaminants,” J. Ind. Eng. Chem., vol. 53, pp. 183–191 (2017). https://doi.org/10.1016/j.jiec.2017.04.024 [CrossRef] [Google Scholar]
  8. M. E. Borges, D. M. García, T. Hernández, J. C. Ruiz-Morales, and P. Esparza, “Supported photocatalyst for removal of emerging contaminants from wastewater in a continuous packed-bed photoreactor configuration,” Catalysts, vol. 5, no. 1, pp. 77–87 (2015).https://doi.org/10.3390/catal5010077 [CrossRef] [Google Scholar]
  9. E. Azimi, M. Darbandi, and A. Mehrdad, “Effect of porosity and crystallinity of ceramic nanoparticles on advanced oxidation process for remediation of organic pollutant and corresponding artificial neural network model,” Mater. Sci. Semicond. Process., vol. 188, no. December 2024 (2025). https://doi.org/10.1016/j.mssp.2024.109248 [CrossRef] [Google Scholar]
  10. Fernando García-Ávila, Alessandro Zambrano Jaramillo and L. V. G. Cinthya Velecela-Garay, Karla Coronel-Sánchez, “Effectiveness of membrane technologies in removing emerging contaminants from wastewater: Reverse Osmosis and Nanofiltration,” J. Lumin., vol. 2, p. 120106 (2023). https://doi.org/10.1016/j.watcyc.2024.12.004 [Google Scholar]
  11. J. J. S. Alonso, N. El Kori, N. Melián-Martel, and B. Del Río-Gamero, “Removal of ciprofloxacin from seawater by reverse osmosis,” J. Environ. Manage., vol. 217, pp. 337–345 (2018). https://doi.org/10.1016/j.jenvman.2018.03.108 [CrossRef] [Google Scholar]
  12. G. C. C. Yang, Y. C. Chen, H. X. Yang, and C. H. Yen, “Performance and mechanisms for the removal of phthalates and pharmaceuticals from aqueous solution by graphene-containing ceramic composite tubular membrane coupled with the simultaneous electrocoagulation and electrofiltration process,” Chemosphere, vol. 155, pp. 274–282 (2016). https://doi.org/10.1016/j.chemosphere.2016.04.060 [CrossRef] [PubMed] [Google Scholar]
  13. B. K. Zaied, M. Rashid, M. Nasrullah, A. W. Zularisam, D. Pant, and L. Singh, “A comprehensive review on contaminants removal from pharmaceutical wastewater by electrocoagulation process,” Sci. Total Environ., vol. 726, p. 138095 (2020). https://doi.org/10.1016/j.scitotenv.2020.138095 [CrossRef] [Google Scholar]
  14. G. C. C. Yang and C. H. Yen, “The use of different materials to form the intermediate layers of tubular carbon nanofibers/carbon/alumina composite membranes for removing pharmaceuticals from aqueous solutions,” J. Memb. Sci., vol. 425–426, pp. 121–130 (2013). 10.1016/j.memsci.2012.09.011 [CrossRef] [Google Scholar]
  15. Y. Kaya et al., “Treatment of chemical synthesis-based pharmaceutical wastewater in an ozonation-anaerobic membrane bioreactor ( AnMBR ) system,” Chem. Eng. J. (2017). https://doi.org/10.1016/j.cej.2017.03.154 [Google Scholar]
  16. L. Santamaría, F. Devred, E. M. Gaigneaux, M. A. Vicente, S. A. Korili, and A. Gil, “Microporous and Mesoporous Materials Effect of the surface properties of Me 2 + / Al layered double hydroxides synthesized from aluminum saline slag wastes on the adsorption removal of drugs,” Microporous Mesoporous Mater., vol. 309, no. June, p. 110560 (2020). https://doi.org/10.1016/j.micromeso.2020.110560 [CrossRef] [Google Scholar]
  17. F. C. C. Moura, “Emerging contaminants removal by granular activated carbon obtained from residual Macauba biomass,” Environ. Sci. Pollut. Res. (2018). https://doi.org/10.1007/s11356-018-2713-8 [Google Scholar]
  18. T. Li, X. Han, C. Liang, M. J. I. Shohag, and X. Yang, “Sorption of sulphamethoxazole by the biochars derived from rice straw and alligator flag,” Environ. Technol. (United Kingdom), vol. 36, no. 2, pp. 245–253 (2015). https://doi.org/10.1080/09593330.2014.943299 [Google Scholar]
  19. Y. M. Correa-navarro, L. Giraldo, and J. C. Moreno-piraj, “Data in brief Dataset for effect of pH on caffeine and diclofenac adsorption from aqueous solution onto fi que bagasse biochars,” vol. 25, pp. 1–6 (2019). https://doi.org/10.1016/j.dib.2019.104111 [Google Scholar]
  20. A. GHEZIR, “Thème : L ’ étude de l ’ adsorption d e la caféine par les résidus d ’ orange,” Université Ferhat Abbas Sétif-1 (2014) [Google Scholar]
  21. I. Anastopoulos, A. Katsouromalli, and I. Pashalidis, “Oxidized biochar obtained from pine needles as a novel adsorbent to remove caffeine from aqueous solutions,” J. Mol. Liq., vol. 304, p. 112661 (2020). https://doi.org/10.1016/j.molliq.2020.112661 [CrossRef] [Google Scholar]
  22. S. Keerthanan, A. Bhatnagar, K. Mahatantila, and C. Jayasinghe, “Environmental Technology & Innovation Engineered tea-waste biochar for the removal of caffeine, a model compound in pharmaceuticals and personal care products ( PPCPs ), from aqueous media,” Environ. Technol. Innov., vol. 19, p. 100847 (2020). https://doi.org/10.1016/j.eti.2020.100847 [CrossRef] [Google Scholar]
  23. A. Demba, M. Sid, and A. Kankou, “Sorption of caffeine onto low-cost sorbent : Application of two and three-parameter isotherm models,” Appl. J. Environ. Eng. Sci., vol. 3, pp. 263–272 (2019). https:/doi.org/10.48422/IMIST.PRSM/ajees-v5i3.17210. [Google Scholar]
  24. I. W. A. Publishing and W. Quality, “Study of natural adsorbent chitosan and derivatives for the removal of caffeine from water Serena Sanford, Kripa S . Singh, Sahil Chaini and Gaetan LeClair,” pp. 80–90 (2012). https://doi.org/10.2166/wqrjc.2012.021 [Google Scholar]
  25. K. Yamamoto, T. Shiono, Y. Matsui, and M. Yoneda, “CHANGES THE STRUCTURE AND CAFFEINE ADSORPTION PROPERTY OF CALCINED MONTMORILLONITE,” Int. J. GEOMATE, vol. 11, no. 24, pp. 2301–2306 (2016) [Google Scholar]
  26. M. F. Oliveira, V. M. De Souza, G. Carlos, M. Gurgel, and A. Vieira, “Fixed- bed adsorption of caffeine onto thermally modified Verde-lodo bentonite Fixed-bed adsorption of caffeine onto thermally modified Verde-lodo bentonite (2018). https://doi.org/10.1021/acs.iecr.8b03734 [Google Scholar]
  27. T. Okada, “Organoclays in water cause expansion that facilitates caffeine adsorption,” Langmuir,. https://doi.org/10.1021/la503708t [Google Scholar]
  28. K. Yamamoto, “Influence of hydrophilicity on adsorption of caffeine onto montmorillonite (2018). https://doi.org/10.1177/0263617417735480 [Google Scholar]
  29. M. El Miz, H. Akichoh, D. Berraaouan, S. Salhi, and A. Tahani, “Chemical and Physical Characterization of Moroccan Bentonite Taken from Nador ( North of Morocco ),” no. January 2013 (2019) . https://doi.org/10.5923/j.chemistry.20170704.01 [Google Scholar]
  30. E. Vargün, C. Küçükuysal, Ö. Evren, M. Gülcan, Ö. Ataytür, and C. Güngör, “the Effects of Type and Amount of Quaternary Salts on Modification of Çanakkale Bentonite,” Mugla J. Sci. Technol., vol. 3, no. 2, pp. 178–183 (2017). https://doi.org/10.22531/muglajsci.357263 [CrossRef] [Google Scholar]
  31. L. A. Shah, N. S. Khattak, M. G. S. Valenzuela, A. Manan, and F. R. Valenzuela Díaz, “Preparation and characterization of purified Na-activated bentonite from Karak (Pakistan) for pharmaceutical use,” Clay Miner., vol. 48, no. 4, pp. 595–603 (2013). https://doi.org/10.1180/claymin.2013.048.4.03 [CrossRef] [Google Scholar]
  32. D. Clement, J. M. Tristan, M. Hamad, P. Roux, and J. C. Heughebaert, “Etude de la substitution Mg2+ Ca2+ dans l’orthophosphate tricalcique β,” J. Solid State Chem., vol. 78, no. 2, pp. 271–280 (1989). https://doi.org/10.1016/0022-4596(89)90108-4 [CrossRef] [Google Scholar]
  33. O. VERON, “Etude des mécanismes de coloration de verres obtenue par échange ionique Ag + / Na + et précipitation de nano agrégats métalliques,” UNIVERSITÉ D’ORLÉANS (2010) [Google Scholar]
  34. G. G. Lenzi, “Caffeine Adsorption onto Bentonite Clay in Suspension and Immobilized,” Eng. Technol. Tech., vol. 63, pp. 1–10 (2020) . https://doi.org/10.1590/1678-4324-2020180637 [Google Scholar]
  35. K. Yamamoto, T. Shiono, Y. Matsui, and M. Yoneda, “Interaction of caffeine with montmorillonite Interaction of caffeine with montmorillonite,” Part. Sci. Technol., vol. 6351, no. October (2017). https://doi.org/10.1080/02726351.2017.1372825 [Google Scholar]
  36. S. Sagrado, “CHIMICA A rapid procedure for the determination of caffeine, theophylline and theobromine in urine by micellar liquid chromatography and direct sample injection,” Anal. Chim. Acta, vol. 304, pp. 195–201 (1995). https://doi.org/10.1016/0003-2670(94)00619-W [CrossRef] [Google Scholar]
  37. S. T. Khankhasaeva, S. V Badmaeva, and M. V Ukhinova, “Adsorption of diclofenac onto Fe 2 O 3 -pillared montmorillonite : Equilibrium, kinetics and thermodynamic studies,” J. Mol. Liq., vol. 380, p. 121725 (2023). https://doi.org/10.1016/j.molliq.2023.121725 [CrossRef] [Google Scholar]
  38. S. N. N. and D. S. C. H. Giles, T. H. MacEwan, “Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids,” J. Chem. Soc., vol. 846 (1958) . https://doi.org/10.1039/JR9600003973 [Google Scholar]
  39. M. F. Oliveira, M. G. C. Silva, and M. G. A. Vieira, “Applied Clay Science Equilibrium and kinetic studies of ca ff eine adsorption from aqueous solutions on thermally modi fi ed Verde-lodo bentonite,” Appl. Clay Sci., vol. 168, no. July 2018, pp. 366–373 (2019). https://doi.org/10.1016/j.clay.2018.12.011 [CrossRef] [Google Scholar]
  40. P. J. Samuel H. Yalkowsky, Yan HE, handbook of aqueous solubility data. (2016) [Google Scholar]
  41. A. Ana et al., “SC,” Carbohydr. Polym. (2018). https://doi.org/10.1016/j.carbpol.2018.11.081 [Google Scholar]
  42. C. Vinicius et al., “Journal of Water Process Engineering Alternative techniques for ca ff eine removal from wastewater : An overview of opportunities and challenges,” vol. 35, no. February (2020). https://doi.org/10.1016/j.jwpe.2020.101231 [Google Scholar]
  43. I. Mobasherpour, E. Salahi, and M. Ebrahimi, “Thermodynamics and kinetics of adsorption of Cu(II) from aqueous solutions onto multi-walled carbon nanotubes,” J. Saudi Chem. Soc., vol. 18, no. 6, pp. 792–801 (2014). https://doi.org/10.1016/j.jscs.2011.09.006 [CrossRef] [Google Scholar]
  44. L. O. A et al., “Persimmon Tannin Gel : Formation by Autoxidation and Caffeine Adsorption Properties,” Food Sci. Technol. Res., vol. 19, no. 4, pp. 697–703 (2013). https://doi.org/10.3136/fstr.19.697 [CrossRef] [Google Scholar]
  45. J. Ye et al., “Preparation of tea catechins using polyamide,” JBIOSC, vol. 111, no. 2, pp. 232–236 (2011) https://doi.org/10.1016/j.jbiosc.2010.09.019 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.