Open Access
Issue
E3S Web Conf.
Volume 632, 2025
The 5th Edition of Oriental Days for the Environment “Green Lab. Solution for Sustainable Development” (JOE5)
Article Number 01032
Number of page(s) 8
Section Natural Resources, Earth & Environmental Studies
DOI https://doi.org/10.1051/e3sconf/202563201032
Published online 03 June 2025
  1. S. Zehdi-Azouzi, E. Cherif, S. Moussouni, M. Gros-Balthazard, et al., Genetic structure of the date palm (Phoenix dactylifera) in the Old World reveals a strong differentiation between eastern and western populations, Ann. Bot., 116, 101-112 (2015). [CrossRef] [PubMed] [Google Scholar]
  2. R.W. Nixon, Imported varieties of dates in the United States, (1950). [Google Scholar]
  3. M. Saaidi, Amelioration genetique du palmier dattier: criteres de selection, techniques et resultats, Options Méditerr., 11, 133-134 (1990). [Google Scholar]
  4. M.H. Sedra, Triage d’une collection de génotypes de palmier dattier pour la résistance au Bayoud causé par Fusarium oxysporum f. sp. albedinis, Al Awamia, 90, 9-18 (1995). [Google Scholar]
  5. S. Rhouma, S. Dakhlaoui-Dkhil, A.O.M. Salem, S. Zehdi-Azouzi, A. Rhouma, M. Marrakchi, M. Trifi, Genetic diversity and phylogenic relationships in date-palms (Phoenix dactylifera L.) as assessed by random amplified microsatellite polymorphism markers (RAMPOs), Sci. Hortic., 117, 53-57 (2008). [CrossRef] [Google Scholar]
  6. R.W. Allard, Principles of plant breeding, John Wiley & Sons 1999. [Google Scholar]
  7. M. Gharbi, M. El Felah, Article de synthèse Les céréales en tunisie: plus d’un siècle de recherche variétale, Ann DE L’INRATT, 86, 45 (2013). [Google Scholar]
  8. F. Hospital, Selection in backcross programmes, Philos. Trans. R. Soc. B: Biol. Sci., 360, 1503-1511 (2005). [CrossRef] [PubMed] [Google Scholar]
  9. F. Hospital, A. Charcosset, Marker-assisted introgression of quantitative trait loci, Genetics, 147, 1469-1485 (1997). [CrossRef] [Google Scholar]
  10. R. Krueger, Date palm germplasm: overview and utilization in the USA, Proc. Int. Conf. Date Palms, 2001. [Google Scholar]
  11. N. Bouguedoura, M. Bennaceur, S. Babahani, S.E. Benziouche, Date Palm Status and Perspective in Algeria, Date Palm Genetic Resources and Utilization,125-168 (2015). [Google Scholar]
  12. I.E. Hadrami, A.E. Hadrami, Breeding date palm, Breed. Plant. Tree Crops: Trop. Species, Springer, 191-216 (2009). [CrossRef] [Google Scholar]
  13. M. Frisch, A.E. Melchinger, Selection theory for marker-assisted backcrossing, Genetics, 170, 909-917 (2005). [CrossRef] [Google Scholar]
  14. R. Bernardo, Breeding for quantitative traits in plants, Stemma press Woodbury, MN2002. [Google Scholar]
  15. S. Tanksley, J. Nelson, Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines, Theor. Appl. Genet., 92, 191-203 (1996). [CrossRef] [PubMed] [Google Scholar]
  16. J.B. Holland, Implementation of molecular markers for quantitative traits in breeding programs—challenges and opportunities, Proc. 4th Int. Crop Sci. Congr, Regional Institute Gosford, Australia, pp. 1-13, 2004. [Google Scholar]
  17. S. Ramesh, M. Rajesh, A. Das, K. Hebbar, CRISPR/Cas9–based genome editing to expedite the genetic improvement of palms: challenges and prospects, Front. Plant Sci., 15, 1385037 (2024). [CrossRef] [Google Scholar]
  18. K. Titouh, L. Khelifi, M. Slaoui, N. Boufis, A. Morsli, K.T.H. Moussa, A. Makhzoum, A simplified protocol to induce callogenesis in protoplasts of date palm (Phoenix dactylifera L.) cultivars, Iran. J. Biotechnol., 13, 26 (2015). [CrossRef] [PubMed] [Google Scholar]
  19. A. Assani, D. Chabane, H. Shittu, N. Bouguedoura, Date palm cell and protoplast culture, Date Palm Biotechnol., 605-629 (2011). [Google Scholar]
  20. M.R. Davey, P. Anthony, J.B. Power, K.C. Lowe, Plant protoplasts: status and biotechnological perspectives, Biotechnol. Adv., 23, 131-171 (2005). [CrossRef] [Google Scholar]
  21. I.S. Al-Mssallem, S. Hu, X. Zhang, Q. Lin, W. Liu, J. Tan, X. Yu, J. Liu, L. Pan, T. Zhang, Genome sequence of the date palm Phoenix dactylifera L, Nat. Commun., 4, 2274 (2013). [CrossRef] [Google Scholar]
  22. W. Ahmed, T. Feyissa, K. Tesfaye, S. Farrakh, Genetic diversity and population structure of date palms (Phoenix dactylifera L.) in Ethiopia using microsatellite markers, J. Genet. Eng. Biotechnol., 19, 64 (2021). [CrossRef] [Google Scholar]
  23. H. Rahman, P. Vikram, Z. Hammami, R.K. Singh, Recent advances in date palm genomics: A comprehensive review, Front. Genet., 13, 959266 (2022). [CrossRef] [Google Scholar]
  24. A.A. Saleh, A.H. Sharafaddin, M.H. El_Komy, Y.E. Ibrahim, Y.K. Hamad, Molecular and physiological characterization of Fusarium strains associated with different diseases in date palm, Plos One, 16, e0254170 (2021). [CrossRef] [Google Scholar]
  25. M.W. Yaish, R. Sunkar, Y. Zheng, B. Ji, R. Al-Yahyai, S.A. Farooq, A genome-wide identification of the miRNAome in response to salinity stress in date palm (Phoenix dactylifera L.), Front. Plant Sci., 6, 946 (2015). [Google Scholar]
  26. A.A. Abul-Soad, S.M. Jain, M.A. Jatoi, Biodiversity and conservation of date palm, Biodivers. Conserv. Woody Plants, 313-353 (2017). [Google Scholar]
  27. S. Alansi, F. Al-Qurainy, M. Nadeem, S. Khan, M. Tarroum, A. Alshameri, A.-R.Z. Gaafar, Cryopreservation: A tool to conserve date palm in Saudi Arabia, Saudi J. Biol. Sci., 26, 1896-1902 (2019). [CrossRef] [Google Scholar]
  28. D. Kumari, B.D. Prasad, P. Dwivedi, A. Hidangmayum, S. Sahni, CRISPR/Cas9 mediated genome editing tools and their possible role in disease resistance mechanism, Mol. Biol. Rep., 49, 11587-11600 (2022). [CrossRef] [PubMed] [Google Scholar]
  29. Y. Zhang, X. Ma, X. Xie, Y.G. Liu, CRISPR/Cas9-Based Genome Editing in Plants, Prog. Mol. Biol. Transl. Sci., 149, 133-150 (2017). [CrossRef] [Google Scholar]
  30. M. Saker, S. Adawy, A. Mohamed, H. El-Itriby, Monitoring of cultivar identity in tissue culture-derived date palms using RAPD and AFLP analysis, Biol. Plantarum, 50, 198-204 (2006). [CrossRef] [Google Scholar]
  31. S. Zehdi-Azouzi, E. Cherif, K. Guenni, A.B. Abdelkrim, A. Bermil, S. Rhouma, M.B. Salah, S. Santoni, J.C. Pintaud, F. Aberlenc-Bertossi, Endemic insular and coastal Tunisian date palm genetic diversity, Genetica, 144, 181-190(2016). [CrossRef] [PubMed] [Google Scholar]
  32. M. Delseny, Le séquençage des génomes végétaux: un prélude à l’étude de leur expression, J. Soc. Biol., 196, 297-301 (2002). [CrossRef] [EDP Sciences] [Google Scholar]
  33. F. Sanger, S. Nicklen, A.R. Coulson, DNA sequencing with chain-terminating inhibitors, Proc. Natl. Acad. Sci. U.S.A, 74, 5463-5467 (1977). [CrossRef] [PubMed] [Google Scholar]
  34. M.L. Metzker, Sequencing technologies—the next generation, Nat. Rev. Genet., 11, 31-46 (2010). [CrossRef] [PubMed] [Google Scholar]
  35. S. Goodwin, J.D. McPherson, W.R. McCombie, Coming of age: ten years of next-generation sequencing technologies, Nat. Rev. Genet., 17, 333-351 (2016). [CrossRef] [PubMed] [Google Scholar]
  36. H. Bedjaoui, Etude de la diversité génétique de quelques accessions de palmier dattier (Phoenix dactylifera L.) en Algérie moyennant les marqueurs de l’ADN de type SSR, Master Thesis, Université Mohamed Khider Biskra, Algérie, 2019. [Google Scholar]
  37. M. Ibrahimi, N. Brhadda, R. Ziri, M. Fokar, D. Iraqi, F. Gaboun, M. Labhilili, A. Habach, R. Meziani, J. Elfadile, R. Abdelwahd, G. Diria, Analysis of genetic diversity and population structure of Moroccan date palm (Phoenix dactylifera L.) using SSR and DAMD molecular markers, J. Genet. Eng. Biotechnol., 21, 66 (2023). [CrossRef] [Google Scholar]
  38. C. El Modafar, Mechanisms of date palm resistance to Bayoud disease: Current state of knowledge and research prospects, Physiol. Mol. Plant Pathol., 74, 287-294 (2010). [CrossRef] [Google Scholar]
  39. K. Mullis, F. Faloona, S. Scharf, R. Saiki, G. Horn, H. Erlich, Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction, Cold Spring Harb. Symp. Quant. Biol., 51(1), 263-273 (1986). [CrossRef] [PubMed] [Google Scholar]
  40. J.G. Williams, A.R. Kubelik, K.J. Livak, J.A. Rafalski, S.V. Tingey, DNA polymorphisms amplified by arbitrary primers are useful as genetic markers, Nucleic Acids Res., 18, 6531-6535 (1990). [CrossRef] [PubMed] [Google Scholar]
  41. D. Tautz, Hypervariability of simple sequences as a general source for polymorphic DNA markers, Nucleic Acids Res., 17, 6463-6471 (1989). [CrossRef] [PubMed] [Google Scholar]
  42. P. Vos, R. Hogers, M. Bleeker, M. Reijans, T. van de Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman, M. Kuiper, et al., AFLP: a new technique for DNA fingerprinting, Nucleic Acids Res., 23, 4407-4414 (1995). [CrossRef] [PubMed] [Google Scholar]
  43. A.J. Brookes, The essence of SNPs, Gene, 234, 177-186(1999). [CrossRef] [Google Scholar]
  44. C.A. Heid, J. Stevens, K.J. Livak, P.M. Williams, Real time quantitative PCR, Genome Res., 6, 986-994(1996). [CrossRef] [PubMed] [Google Scholar]
  45. Z. Wang, M. Gerstein, M. Snyder, RNA-Seq: a revolutionary tool for transcriptomics, Nat. Rev. Genet., 10, 57-63(2009). [CrossRef] [PubMed] [Google Scholar]
  46. J.C. Alwine, D.J. Kemp, G.R. Stark, Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes, Proc Natl Acad Sci U S A, 74, 5350-5354 (1977). [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.