Open Access
Issue
E3S Web Conf.
Volume 636, 2025
2025 10th International Conference on Sustainable and Renewable Energy Engineering (ICSREE 2025)
Article Number 05001
Number of page(s) 7
Section Thermal Energy Conversion and Advanced Materials
DOI https://doi.org/10.1051/e3sconf/202563605001
Published online 30 June 2025
  1. Md. M. Islam, “Lignocellulosic biomass-based materials: a promising resource for viable energy storage,” Sustain Energy Fuels, vol. 8, no. 9, pp. 1823–1871 2024 [CrossRef] [Google Scholar]
  2. M. Gautam, T. Patodia, V. Gupta, K. Sachdev, and H. S. Kushwaha, “Synthesis of high surface area activated carbon from banana peels biomass for zinc-ion hybrid super-capacitor,” J Energy Storage, vol. 102, p. 114088, Nov. 2024 [CrossRef] [Google Scholar]
  3. S. Lu et al., “Multi-heteroatom-doped porous carbon with high surface adsorption energy of potassium derived from biomass waste for high-performance supercapacitors,” Int J Biol Macromol, vol. 258, p. 128794, Feb. 2024 [CrossRef] [PubMed] [Google Scholar]
  4. Z. Duan, K. Wang, Y. Cao, J. Wang, and Q. Liu, “Multi-objective optimization of thermodynamics parameters of a biomass and liquefied natural gas complementary system integrated with liquid air energy storage and two-stage organic Rankine cycles,” Energy, p. 134171, Dec. 2024 [Google Scholar]
  5. M. I. Rivas Mendoza, L. Osorio Paredes, C. M. Pala Vera, and M. A. Jara Castillo, “Biomass as Renewable Energy: A Systematic Literature Review 2020-2023,” Latin American and Caribbean Consortium of Engineering Institutions, 2024. [Google Scholar]
  6. M. A. H. Bernard and M. M. Lucotte, “Bamboo Biomass for Bioenergy Production in Mauritius,” J Sustain Bioenergy Syst, vol. 12, no. 04, pp. 82–98, 2022 [CrossRef] [Google Scholar]
  7. K. Chaturvedi et al., “Bamboo for producing charcoal and biochar for versatile applications,” Biomass Convers Biorefin, vol. 14, no. 14, pp. 15159–15185, 2024 [CrossRef] [Google Scholar]
  8. S. Wen et al., “Enhanced Performance of Porous Carbon Microspheres from Bamboo Fiber for Supercapacitors Through Acid-Assisted Hydrothermal Carbonization,” 2023 [Google Scholar]
  9. Q. Gao, Y. Huang, J. Hu, J. Gan, and W. Yu, “Green synthesis of multifunctional bamboo-based nonwoven fabrics for medical treatment,” Int J Biol Macromol, vol. 279, p. 135473, Nov. 2024 [CrossRef] [PubMed] [Google Scholar]
  10. Y. Zhang, C. Wang, X. Chen, X. Dong, C. Meng, and C. Huang, “Bamboo Leaves as Sustainable Sources for the Preparation of Amorphous Carbon/Iron Silicate Anode and Nickel-Cobalt Silicate Cathode Materials for Hybrid Supercapacitors,” ACS Appl Energy Mater, vol. 4, no. 9, pp. 9328–9340, Sep. 2021 [CrossRef] [Google Scholar]
  11. N. Kumar, S.-B. Kim, S.-Y. Lee, and S.-J. Park, “Recent Advanced Supercapacitor: A Review of Storage Mechanisms, Electrode Materials, Modification, and Perspectives,” Nanomaterials, vol. 12, no. 20, p. 3708, Oct. 2022 [CrossRef] [PubMed] [Google Scholar]
  12. T. Agarwal, P. Rani, and A. Khatri, “Supercapacitors: Enhancing Energy Storage Efficiency,” International Journal of Psychosocial Rehabilitation, 2022 [Google Scholar]
  13. M. Pathak et al., “High Energy Density Supercapacitors: An Overview of Efficient Electrode Materials, Electrolytes, Design, and Fabrication,” The Chemical Record, vol. 24, no. 1, Jan. 2024 [CrossRef] [Google Scholar]
  14. H. Chen, H. Hu, F. Han, J. Liu, Y. Zhang, and Y. Zheng, “CoMoO 4 /bamboo charcoal hybrid material for high-energy-density and high cycling stability supercapacitors,” Dalton Transactions, vol. 49, no. 31, pp. 10799–10807, 2020 [CrossRef] [PubMed] [Google Scholar]
  15. J. Meena, S. shankari Sivasubramaniam, E. David, and S. K, “Green supercapacitors: review and perspectives on sustainable template-free synthesis of metal and metal oxide nanoparticles,” RSC Sustainability, pp. 1224–12452024 [Google Scholar]
  16. W. Huang et al., “Dual-activated shoot shells as three-dimensional mesh materials for all-solid-state supercapacitors,” Journal of Physics and Chemistry of Solids, vol. 200, p. 112590, May 2025 [CrossRef] [Google Scholar]
  17. R. Farma, A. Putri, E. Taer, A. Awitdrus, and A. Apriwandi, “Synthesis of highly porous activated carbon nanofibers derived from bamboo waste materials for application in supercapacitor,” Journal of Materials Science: Materials in Electronics, vol. 32, no. 6, pp. 7681–7691 Mar. 2021 [CrossRef] [Google Scholar]
  18. B. S. Girgis, Y. M. Temerk, M. M. Gadelrab, and I. D. Abdullah, “X-ray Diffraction Patterns of Activated Carbons Prepared under Various Conditions,” Carbon letters, vol. 8, no. 2, pp. 95–100, Jun. 2007 [CrossRef] [Google Scholar]
  19. P. K. Mishra et al., “Enhanced electrochemical performance of activated carbon derived from Acacia catechu bark by KOH activation for supercapacitor application,” E3S Web of Conferences, vol. 610, p. 01004, Jan. 2025 [CrossRef] [EDP Sciences] [Google Scholar]
  20. C. Cougnon, “Impact of the Scan Rate on the Stability Window of an Electrical Double-Layer Capacitor,” Energies (Basel), vol. 16, no. 15, p. 5687, Jul. 2023 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.