Open Access
Issue
E3S Web Conf.
Volume 637, 2025
2025 International Conference on Environmental Monitoring and Ecological Restoration (EMER 2025)
Article Number 01012
Number of page(s) 5
Section Ecological Restoration Technology and Practice Research
DOI https://doi.org/10.1051/e3sconf/202563701012
Published online 16 July 2025
  1. IPCC. (2021). Climate Change 2021: The Physical Science Basis. Cambridge University Press. [Google Scholar]
  2. Wada, Y., Van Beek, L. P., & Bierkens, M. F. (2010). Global depletion of groundwater resources. Geophysical Research Letters, 37(20), L20402. [Google Scholar]
  3. Famiglietti, J. S. (2014). The global groundwater crisis. Nature Climate Change, 4(11), 941–948. [Google Scholar]
  4. Tapley, B. D., Bettadpur, S., & Ries, J. C. (2004). GRACE measurements of mass variability in the Earth system. Science, 305(5683), 503–505. [Google Scholar]
  5. Rodell, M., Velicogna, I., & Famiglietti, J. S. (2009). Satellite-based estimates of groundwater depletion in India. Nature, 460(7258), 999–1002. [Google Scholar]
  6. Cheng, G., & Wu, T. (2014). Effects of climate change on the water resources and ecosystems in the Heihe River Basin. Environmental Earth Sciences, 73(6), 2719–2731. [Google Scholar]
  7. Liu, J., & Li, S. (2019). Environmental changes in the Heihe River Basin and their impacts on water resources. Hydrology Research, 50(3), 803–815. [Google Scholar]
  8. Zhao, X., Liu, Y., & Yao, T. (2016). Changes in groundwater resources in the Heihe River Basin under the influence of anthropogenic activities. Water Resources Research, 52(12), 9624–9636. [Google Scholar]
  9. Gao, J., & Zhang, Y. (2018). Impacts of agricultural irrigation on groundwater in the Heihe River Basin. Environmental Monitoring and Assessment, 190(5), 1–10. [Google Scholar]
  10. Yao, T., Ma, Y., & Zhang, F. (2022). Climate change impacts on water resources in the Heihe River Basin. Environmental Earth Sciences, 81(9), 2341–2353. [Google Scholar]
  11. Castle, J. S., Mace, R. E., & Lockhart, S. J. (2014). Estimation of groundwater storage change using GRACE data: A case study in the Central Valley, California. Hydrology and Earth System Sciences, 18(6), 2041–2051. [Google Scholar]
  12. Zhou, J., Yang, S., & Shao, Z. (2016). Use of GRACE satellite data to monitor groundwater storage changes in the North China Plain. Hydrology Research, 47(3), 447–457. [Google Scholar]
  13. Long, D., Li, L., & Zhang, X. (2021). Application of GRACE-based groundwater storage estimates in arid regions: Case study of the Tarim Basin. Environmental Earth Sciences, 80(10), 370. [Google Scholar]
  14. Gerdener, H., Iqbal, S., & Hermann, A. (2020). The role of uncertainties in GRACE data-based groundwater estimates. Water Resources Research, 56(6), e2019WR026520. [Google Scholar]
  15. Schilling, K. E., & Niraula, R. (2017). A Bayesian framework for groundwater estimation in a data- scarce environment. Water Resources Research, 53(2), 1409–1425. [Google Scholar]
  16. Vrugt, J. A., & Robinson, B. A. (2009). Bayesian model averaging for hydrologic model selection. Water Resources Research, 45(5), W05416. [Google Scholar]
  17. Tang, X., & Zheng, J. (2022). A Bayesian approach for integrating groundwater monitoring data and satellite observations. Hydrology and Earth System Sciences, 26(8), 2485–2500. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.