Open Access
Issue
E3S Web Conf.
Volume 641, 2025
The 17th International Scientific Conference of Civil and Environmental Engineering for the PhD. Students and Young Scientists – Young Scientist 2025 (YS25)
Article Number 01003
Number of page(s) 7
Section Civil Engineering
DOI https://doi.org/10.1051/e3sconf/202564101003
Published online 12 August 2025
  1. C. Liu, C. Wu, Y. Zhao, Z. Chen, T. Ren, Y. Chen, G. Zhang, Actively and reversibly controlling thermal conductivity in solid materials, Physics Reports, 1058, 1-32 (2024) [Google Scholar]
  2. Z. Said, A. K. Pandey, A. K. Tiwari, B. Kalidasan, F. Jamil, A. K. Thakur, V. V. Tyagi, A. Sarı, H. M. Ali, Nano-enhanced phase change materials: Fundamentals and applications, Progress in Energy and Combustion Science, 104, 101162 (2024) [Google Scholar]
  3. S. Raoux, Phase Change Materials. Annual Review of Materials Research, 39(1), 25-48 (2009) [Google Scholar]
  4. V. J. Reddy, M. F. Ghazali, S. Kumarasamy, Innovations in phase change materials for diverse industrial applications: A comprehensive review, Results in Chemistry, 8, 101552 (2024) [Google Scholar]
  5. K. Ghasemi, S. Tasnim, S. Mahmud, PCM, nano/microencapsulation and slurries: A review of fundamentals, categories, fabrication, numerical models and applications, Sustain. Energy Technol. Assessments, 52, 102084 (2022) [Google Scholar]
  6. Md. S. Mohtasim, B. K. Das, Biomimetic and bio-derived composite Phase Change Materials for Thermal Energy Storage applications: A thorough analysis and future research directions, J. Energy Storage, 84, 110945 (2024) [Google Scholar]
  7. I. Sarbu, C. Sebarchievici, A Comprehensive Review of Thermal Energy Storage, Sustainability, 10(1), 191 (2018) [Google Scholar]
  8. P. A. Fokaides, A. Kylili, S. A. Kalogirou, Phase change materials (PCMs) integrated into transparent building elements: a review, Mater Renew Sustain Energy 4, 6 (2015) [Google Scholar]
  9. J. M. Charles, Performance and Stability of CaCl2·6H2O-Based Phase Change Materials, Lehigh University, (2018) [Google Scholar]
  10. M. Chen, L. Jiang, S. Mi, X. Shen, Energy saving simulation of phase change materials in the enclosure structure of archives warehouse in Lhasa, Energy Reports, 8, 4 (2022) [Google Scholar]
  11. H. M. Teamah, Chapter 1 - Introduction and history of phase change materials’ heat transfer, Phase Change Materials for Heat Transfer, Elsevier, 1-26 (2023) [Google Scholar]
  12. M. Li, Z. Wu, A review of intercalation composite phase change material: Preparation, structure and properties, Renew. Sustain. Energy Rev., 16, 4 (2012) [Google Scholar]
  13. F. Souayfane, F. Fardoun, P. H. Biwole, Phase change materials (PCM) for cooling applications in buildings: A review, Energy Build., 129, 396-431 (2016) [Google Scholar]
  14. K. Ghasemi, S. Tasnim, S. Mahmud, PCM, nano/microencapsulation and slurries: A review of fundamentals, categories, fabrication, numerical models and applications, Sustain. Energy Technol. Assessments, 52, 102084 (2022) [Google Scholar]
  15. P. M. Gilart, Á. Y. Martínez, M. G. Barriuso, C. M. Martínez, Development of PCM/carbon-based composite materials, Sol. Energy Mater. Sol. Cells, 107, 205-211 (2012) [Google Scholar]
  16. G. V. Belessiotis, K. G. Papadokostaki, E. P. Favvas, E. K. Efthimiadou, S. Karellas, Preparation and investigation of distinct and shape stable paraffin/SiO2 composite PCM nanospheres, Energy Convers. Manage., 168, 382-394 (2018) [Google Scholar]
  17. Q. Zhang, J. Liu, J. Zhang, L. Lin, J. Shi, A Review of Composite Phase Change Materials Based on Biomass Materials, Polymers, 14(19), 4089 (2022) [Google Scholar]
  18. S. R. L. da Cunha, J. L. B. de Aguiar, Phase change materials and energy efficiency of buildings: A review of knowledge, J. Energy Storage, 27, 101083 (2020) [Google Scholar]
  19. X. Du, H. Wang, Z. Du, X. Cheng, Synthesis and thermal energy storage properties of a solid–solid phase change material with a novel comb-polyurethane block copolymer structure, Thermochimica Acta, 651, 58-64 (2017) [Google Scholar]
  20. Y. E. Milián, A. Gutiérrez, M. Grágeda, S. Ushak, A review on encapsulation techniques for inorganic phase change materials and the influence on their thermophysical properties, Renew. Sustain. Energy Rev., 73, 983-999 (2017) [Google Scholar]
  21. H. Togun, H. S. Sultan, H. I. Mohammed, A. M. Sadeq, N. Biswas, H. A. Hasan, R. Z. Homod, A. H. Abdulkadhim, Z. M. Yaseen, P. Talebizadehsardari, A critical review on phase change materials (PCM) based heat exchanger: Different hybrid techniques for the enhancement, J. Energy Storage, 79, 109840 (2024) [Google Scholar]
  22. K. Y. Leong, M. R. A. Rahman, B.A. Gurunathan, Nano-enhanced phase change materials: A review of thermo-physical properties, applications and challenges, J. Energy Storage, 21, 18-31 (2019) [Google Scholar]
  23. G. Simonsen, R. Ravotti, P. O'Neill, A. Stamatiou, Biobased phase change materials in energy storage and thermal management technologies, Renew. Sustain. Energy Rev., 184, 113546 (2023) [Google Scholar]
  24. Y. Zhang, Z. Zhu, Z. Peng, J. Luo, X. Sun, J. Li, F. Peng, The Trombe wall equipped with PCMs for the enhancement of the indoor thermal quality, Energy Build., 297, 113407 (2023) [Google Scholar]
  25. M. Che-Pan, E. Simá, A. Ávila-Hernández, J. Uriarte-Flores, R. Vargas-López, Thermal performance of a window shutter with a phase change material as a passive system for buildings in warm and cold climates of México, Energy Build., 281, 112775 (2023) [Google Scholar]
  26. M. Musiał, L. Lichołai, Multi-Faceted Analysis of Phase-Change Composite Intended for Autonomous Buildings, Materials, 17, 2604 (2024) [Google Scholar]
  27. M. Ghamari, C. H. See, D. Hughes, T. Mallick, K S. Reddy, K. Patchigolla, S. Sundaram, Advancing sustainable building through passive cooling with phase change materials, a comprehensive literature review, Energy Build., 312, 114164 (2024) [Google Scholar]
  28. G. Gholamibozanjani, M. Farid, A comparison between passive and active PCM systems applied to buildings, Renewable Energy, 162, 112-123 (2020) [Google Scholar]
  29. K. Jiao, L. Lu, L. Zhao, G. Wang, Towards Passive Building Thermal Regulation: A State-of-the-Art Review on Recent Progress of PCM-Integrated Building Envelopes, Sustainability, 16(15), 6482 (2024) [Google Scholar]
  30. P. Zhang, X. Xiao, Z. W. Ma, A review of the composite phase change materials: Fabrication, characterization, mathematical modeling and application to performance enhancement, Applied Energy, 165, 472-510 (2016) [Google Scholar]
  31. W. Sun, Y. Zhang, Z. Ling, X. Fang, Z. Zhang, Experimental investigation on the thermal performance of double-layer PCM radiant floor system containing two types of inorganic composite PCMs, Energy Build., 211, 109806 (2020) [Google Scholar]
  32. H. Lim, Y. K. Kang, J. W. Jeong, Application of a phase change material to a thermoelectric ceiling radiant cooling panel as a heat storage layer, J. Build. Eng., 32, 101787 (2020) [Google Scholar]
  33. C. Liu, Y. Wu, Y. Zhu, D. Li, L. Ma, Experimental investigation of optical and thermal performance of a PCM-glazed unit for building applications, Energy Build., 158, 794–800 (2018) [Google Scholar]
  34. U. N. Nor Ali, N. M. Nor, N. A. Misnon, S. A. M. Noor, M. Othman, M. A. A. Alias, A. Syamsir, Integration of PCM as an external wall layer in reducing excessive heat of building walls, Funct. Compos. Struct., 4(3), 035005 (2022) [Google Scholar]
  35. S. S. O. Salih, I. I. A. Hamakhan, A. A. Abdulkader, Investigation of Thermal Performance of 3D Printing Integrated Phase Change Materials in Building Structure, International Journal of Heat and Technology, 40(3), 843-848 (2022) [Google Scholar]
  36. R. Millers, A. Korjakins, A. Lešinskis, A. Borodinecs, Cooling Panel with Integrated PCM Layer: A Verified Simulation Study, Energies, 13(21), 5715 (2020) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.