Open Access
Issue |
E3S Web Conf.
Volume 642, 2025
5th European Conference on Unsaturated Soils and Biotechnology applied to Geotechnical Engineering (EUNSAT2025 + BGE)
|
|
---|---|---|
Article Number | 02001 | |
Number of page(s) | 7 | |
Section | EUNSAT2025 - Theoretical and Numerical Models | |
DOI | https://doi.org/10.1051/e3sconf/202564202001 | |
Published online | 14 August 2025 |
- D. Fredlund, A. Xing. Equations for the soil-water characteristic curve. Canadian Geotechnical Journal, 31(4), 521-532 (1994). [CrossRef] [Google Scholar]
- S. Gupta, W. Larson, W. Estimating soil water retention characteristics from particle size distribution, organic matter percent, and bulk density. Water Resources Research. 15 (6), 1633–1635 (1979). [Google Scholar]
- C. Malaya, S. Sreedeep. A critical review of the parameters influencing the soil-water characteristic curve. J. Irrig. Drain. Eng. 138 (1), 55–62 (2012). [Google Scholar]
- W.J. Likos, R. Jaafar. Pore-scale model for water retention and fluid partitioning of partially saturated granular soil. J. Geotech. Geoenviron. Eng. 139 (5), 724–737 (2013). [Google Scholar]
- Y. Zhao, Y. Cui, H. Zhou, X. Feng, Z. Huang. Effects of void ratio and grain size distribution on water retention properties of compacted infilled joint soils. Soils and Foundations, 57(1), 50-59 (2017). [Google Scholar]
- S. Mufti, A. Das. An advanced pore-scale model for simulating water retention characteristics in granular soils. Journal of Hydrology, 615, 128561 (2022). [Google Scholar]
- S. Zhang, D. Tan, H. Zhu, C. Zhou. Estimating family of soil–water characteristic curves for sandy soils from unimodal grain size distribution and void ratio. Journal of Hydrology, 652, 132671 (2025). [Google Scholar]
- D. Mašín. Predicting the dependency of a degree of saturation on void ratio and suction using effective stress principle for unsaturated soils. International Journal for Numerical and Analytical Methods in Geomechanics, 34(1), 73-90 (2010). [Google Scholar]
- A. Pasha, A. Khoshghalb, N. Khalili. Hysteretic model for the evolution of water retention curve with void ratio. Journal of engineering mechanics, 143(7), 04017030 (2017). [Google Scholar]
- S. Salager, M. Nuth, A. Ferrari, L. Laloui. Investigation into water retention behaviour of deformable soils. Canadian Geotechnical Journal, 50(2), 200-208 (2013). [CrossRef] [Google Scholar]
- D. Gallipoli, A.W. Bruno, F. D'onza, C. Mancuso. A bounding surface hysteretic water retention model for deformable soils. Géotechnique, 65(10), 793-804 (2015). [Google Scholar]
- A. Russell. How water retention in fractal soils depends on particle and pore sizes, shapes, volumes and surface areas. Géotechnique, 64(5), 379-390 (2014). [Google Scholar]
- A. Khoshghalb, A. Pasha, N. Khalili. A fractal model for volume change dependency of the water retention curve. Géotechnique, 65(2), 141-146 (2015). [Google Scholar]
- K. Chen, C. Wang, F. Liang. Fractal-based hydraulic model of unsaturated flow in deformable soils considering the evolution of pore size distribution. Journal of Hydrology, 620, 129501 (2023). [Google Scholar]
- Y. Gao, Z. Li, D. Sun, H. Yu. A simple method for predicting the hydraulic properties of unsaturated soils with different void ratios. Soil and Tillage Research, 209, 104913 (2021). [Google Scholar]
- T. Sweijen, H. Aslannejad, S.M. Hassanizadeh. Capillary pressure–saturation relationships for porous granular materials: Pore morphology method vs. pore unit assembly method. Advances in Water Resources, 107, 22-31(2017). [Google Scholar]
- E. Nikooee, G. Habibagahi, B. Daneshian, T. Sweijen, S.M. Hassanizadeh. A grain scale model to predict retention properties of unsaturated soils. In: Proceedings of the 19th International Conference on Soil Mechanics and Geotechnical Engineering (2017). [Google Scholar]
- H. Rajaram, L.A. Ferrand, M.A. Celia. Prediction of relative permeabilities for unconsolidated soils using pore‐scale network models. Water Resources Research, 33(1), 43-52 (1997). [Google Scholar]
- P.H. Simms, E.K. Yanful. A pore-network model for hydromechanical coupling in unsaturated compacted clayey soils. Canadian Geotechnical Journal, 42(2), 499-514 (2005). [Google Scholar]
- B. Daneshian, G. Habibagahi, E. Nikooee. Determination of unsaturated hydraulic conductivity of sandy soils: a new pore network approach. Acta Geotechnica, 16(2), 449-466 (2021). [Google Scholar]
- A. Tong, E. Catalano, B. Chareyre. Pore-scale flow simulations: model predictions compared with experiments on bi-dispersed granular assemblies. Oil Gas Science and Technology-Revue D’IFP Energies Nouvelles 67 (5), 743–752 (2012). [Google Scholar]
- C. Yuan, B. Chareyre, F. Darve. Pore-scale simulations of drainage in granular materials: finite size effects and the representative elementary volume. Advances in water resources, 95, 109-124 (2016). [Google Scholar]
- T. Sweijen, E. Nikooee, S.M. Hassanizadeh, B. Chareyre. The Effects of Swelling and Porosity Change on Capillarity: DEM Coupled with a Pore- Unit Assembly Method. Transport in Porous Media, 113 (1), 207–226 (2016). [Google Scholar]
- M.G. Mahmoodlu, M.T. Van Genuchten, T. Sweijen, A. Raoof. Unsaturated hydraulic properties of heterogeneously packed sands: A pore-scale computational study. Journal of Hydrology, 565, 570–580 (2018). [Google Scholar]
- T. Morimoto, B. Zhao, D.M. Taborda, C. O'Sullivan. Critical appraisal of pore network models to simulate fluid flow through assemblies of spherical particles. Computers and Geotechnics, 150, 104900 (2022). [Google Scholar]
- S. Hamamoto, P. Moldrup, K. Kawamoto, T. Sakaki, T. Nishimura, T. Komatsu. Pore network structure linked by X-ray CT to particle characteristics and transport parameters. Soils and Foundations, 56(4), 676-690 (2016). [Google Scholar]
- C. Marcolli, F. Mahrt, B. Kärcher. Soot PCF: pore condensation and freezing framework for soot aggregates. Atmospheric Chemistry and Physics, 21(10), 7791-7843 (2021). [Google Scholar]
- N. Lu, W.J. Likos. Unsaturated soil mechanics, 153-157. Hoboken, NJ: J. Wiley (2004). [Google Scholar]
- A. Rostami, G. Habibagahi, M. Ajdari, E. Nikooee. Pore network investigation on hysteresis phenomena and influence of stress state on the SWRC. International Journal of Geomechanics, 15 (5), 1–22 (2015). [Google Scholar]
- C. Pereira. Formulation of an advanced effective stress based constitutive model for unsaturated soils. PhD Thesis, IST, Portugal (2020). [Google Scholar]
- A. Pasha, A. Khoshghalb, N. Khalili. Evolution of isochoric water retention curve with void ratio. Computers and Geotechnics, 122, 103536 (2020). [Google Scholar]
- V. Joekar‐Niasar, F. Doster, R.T. Armstrong, D. Wildenschild, M.A.Celia. Trapping and hysteresis in two‐phase flow in porous media: A pore‐network study. Water Resources Research, 49(7), 4244-4256 (2013). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.