Open Access
Issue
E3S Web Conf.
Volume 642, 2025
5th European Conference on Unsaturated Soils and Biotechnology applied to Geotechnical Engineering (EUNSAT2025 + BGE)
Article Number 02025
Number of page(s) 5
Section EUNSAT2025 - Theoretical and Numerical Models
DOI https://doi.org/10.1051/e3sconf/202564202025
Published online 14 August 2025
  1. Costigliola, R. M., Mancuso, C., Pagano, L., & Silvestri, F. (2022). Prediction of permanent settlements of an upstream faced earth dam. Computers and Geotechnics, 144, 104594. (2022) https://doi.org/10.1016/j.compgeo.2021.104594 [Google Scholar]
  2. Icold, 2001. Design features of dams to effectively resist seismic ground motion. International Commission On Large Dams, Paris, Bulletin, p. 120. (2001) [Google Scholar]
  3. Sica, S., & Pagano, L.. Performance-based analysis of earth dams: procedures and application to a sample case. Soils and foundations, 49(6), 921-939. (2009) https://doi.org/10.3208/sandf.49.921 [Google Scholar]
  4. Wieland, M.. Seismic aspects of dams. General Report Q, 83, 21. (2003) [Google Scholar]
  5. Pagano, L., Russo, C., Sica, S., Costigliola, R. M.,. Limit states in earth dams during seismic and post- seismic stages. Theme Lecture in Proceedings of the VII ICEGE 7th International Conference on Earthquake Geotechnical Engineering. Rome 17-20 June 2019. Proceedings in Earth and geosciences. Francesco Silvestri &Nicola Moraci (Eds.), Published by: CRC press / Balkema - www.crcpress.com, ISBN 978-0- 367-14328-2 – V.4 pp.600-616 Theme Lecture. (2019). [Google Scholar]
  6. Seed, H. B., Lee, K. L., Idriss, I. M., & Makdisi, F. I. The slides in the San Fernando dams during the earthquake of February 9, 1971. Journal of the Geotechnical Engineering Division, 101(7), 651-688. (1975). https://doi.org/10.1061/AJGEB6.0000178 [Google Scholar]
  7. Seed, H. B., Seed, R. B., Harder, L. F., & Jong, H. L. Re-Evaluation of the Lower San Fernando Dam. Report 2: Examination of the Post-Earthquake Slide of February 9, 1971. Available from the National Technical Information Service, Springfield, VA. 22161 as AD-A 214722. Price codes: A 12 in paper copy. (1989). [Google Scholar]
  8. Charatpangoon, B., Kiyono, J., Furukawa, A., & Hansapinyo, C. Dynamic analysis of earth dam damaged by the 2011 Off the Pacific Coast of Tohoku Earthquake. Soil Dynamics and Earthquake Engineering, 64, 50-62. (2014). https://doi.org/10.1016/j.soildyn.2014.05.002 [Google Scholar]
  9. Harder, L. F., Kelson, K. I., Kishida, T., & Kayen, R. Preliminary observations of the Fujinuma dam failure following the March 11, 2011 Tohoku Offshore Earthquake, Japan. Geotechnical Extreme Events Reconnaissance Report No. GEER-25e. (2011). [Google Scholar]
  10. Masini, L., & Rampello, S. La risposta di grandi dighe di terra durante eventi sismici intensi. [Google Scholar]
  11. Newmark, N. M. Effects of earthquakes on dams and embankments. Geotechnique, 15(2), 139-160. (1965). [Google Scholar]
  12. Makdisi, F. I., & Seed, H. B. Simplified procedure for estimating dam and embankment earthquake- induced deformations. Journal of the Geotechnical Engineering Division, 104(7), 849-867. (1978).https://doi.org/10.1061/AJGEB6.0000668 [Google Scholar]
  13. Yegian, M. K., Marciano, E. A., & Ghahraman, V. G. Earthquake-induced permanent deformations: probabilistic approach. Journal of Geotechnical Engineering, 117(1), 35-50. (1991). https://doi.org/10.1061/(ASCE)0733-9410(1991)117:1(35) [Google Scholar]
  14. Bilotta, E., Pagano, L., & Sica, S. Effect of ground- motion asynchronism on the equivalent acceleration of earth dams. Soil Dynamics and Earthquake Engineering, 30(7), 561-579. (2010). https://doi.org/10.1016/j.soildyn.2010.01.014 [Google Scholar]
  15. Alonso, E. E., & Pinyol, N. M. Unsaturated soil mechanics in earth and rockfill dam engineering. In Unsaturated Soils. Advances in Geo-Engineering (pp. 19-48). CRC Press. (2008). [Google Scholar]
  16. Alonso, E. E., & Cardoso, R. Behavior of materials for earth and rockfill dams: Perspective from unsaturated soil mechanics. Frontiers of Architecture and Civil Engineering in China, 4, 1-39. (2010). [Google Scholar]
  17. Ariyan, M., Habibagahi, G., & Nikooee, E. Seismic response of earth dams considering dynamic properties of unsaturated zone. In E3S Web of Conferences (Vol. 9, p. 08002). EDP Sciences. (2016). https://doi.org/10.1051/e3sconf/20160908002 [Google Scholar]
  18. Fredlund, D. G., & Krahn, J. (1977). Comparison of slope stability methods of analysis. Canadian geotechnical journal, 14(3), 429-439. (1977). https://doi.org/10.1139/t77-045 [Google Scholar]
  19. Richards, L. A. Capillary conduction of liquids through porous mediums. physics, 1(5), 318-333. (1931) [Google Scholar]
  20. Geostudio (2018) GeoSlope International. Manual. [Google Scholar]
  21. Heitland, J., Williams, J., Wanninayake A., Seepage Models – Tips, Tools & Guidance (From an Engineer’s Perspective). Dam Safety, National Conference of the Association of State Dam Safety Officials. (2020). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.