Open Access
| Issue |
E3S Web Conf.
Volume 648, 2025
International Conference on Civil, Environmental and Applied Sciences (ICCEAS 2025)
|
|
|---|---|---|
| Article Number | 02019 | |
| Number of page(s) | 10 | |
| Section | Environmental Sciences | |
| DOI | https://doi.org/10.1051/e3sconf/202564802019 | |
| Published online | 08 September 2025 | |
- S. Kanga et al., “Understanding the Linkage between Urban Growth and Land Surface Temperature—A Case Study of Bangalore City, India,” Remote Sens., vol. 14, no. 17, pp. 4241–4241, Aug. 2022, doi: 10.3390/rs14174241. [Google Scholar]
- T. V. Ramachandra, R. S. Rana, S. Vinay, and B. H. Aithal, “Urban heat island linkages with the landscape morphology”. [Google Scholar]
- D. E. V. S. K. Kumar, “Minimizing urban heat island effect and imperviousness factor in Bangalore,” TERI, 2014. [Google Scholar]
- A. O. Mahgoub, S. Gowid, and S. Ghani, “Global evaluation of WBGT and SET indices for outdoor environments using thermal imaging and artificial neural networks,” Sustain. Cities Soc., vol. 60, 2020, doi: 10.1016/j.scs.2020.102182. [Google Scholar]
- F. Aimar and K. Xhexhi, “Urban Heat Islands in Tirana, Albania - Analysis and Potential Solutions,” Eng. Innov., vol. 8, pp. 3–15, 2024. [Google Scholar]
- N. Hussain, A. M. Shumi, and S. M. S. Ahmed, “Remote sensing‐based geostatistical hot spot analysis of Urban Heat Islands in Dhaka, Bangladesh,” Singap. J. Trop. Geogr., vol. 44, no. 3, pp. 438–458, 2023, doi: 10.1111/sjtg.12507. [Google Scholar]
- H. S. Sussman, A. Raghavendra, and L. Zhou, “Impacts of increased urbanization on surface temperature, vegetation, and aerosols over Bengaluru, India,” Remote Sens. Appl. Soc. Environ., vol. 16, pp. 100261–100261, Sept. 2019, doi: 10.1016/j.rsase.2019.100261. [Google Scholar]
- N. Kumari and S. Pandey, “Chapter 14 - Application of artificial intelligence in environmental sustainability and climate change,” in Visualization Techniques for Climate Change with Machine Learning and Artificial Intelligence, Elsevier, 2022, pp. 293–316. doi: 10.1016/b978-0-323-99714-0.00018-2. [Google Scholar]
- H. S. Sussman, A. Dai, and P. E. Roundy, “The controlling factors of urban heat in Bengaluru, India,” Urban Clim., vol. 38, pp. 100881–100881, June 2021, doi: 10.1016/j.uclim.2021.100881. [Google Scholar]
- K. S. Arunab and A. Mathew, “Impact of planned urban development on urban heat island effect: resilient cities for a sustainable future,” Environ. Sci. Pollut. Res. Int., 2025, doi: 10.1007/s11356-025-36190-0. [Google Scholar]
- P. W. Mwangi, P. K. Kamau, and F. N. Karanja, “Analysis of the Relationship between Land Surface Temperature and Vegetation and Built-Up Indices in Upper-Hill, Nairobi,” J. Geosci. Environ. Prot., vol. 6, no. 1, pp. 1–16, 2018, doi: 10.4236/gep.2018.61001. [Google Scholar]
- M. Sahu and S. Majee, “A systematic analysis of AI-based methods for thermal control and energy-efficiency in Sustainable Buildings,” Archit. Image Stud., vol. 6, no. 1, pp. 36–45, 2025, doi: 10.48619/ais.v6i1.1088. [Google Scholar]
- Q. Zhanwen and M. Z. Islam, “Urban equilibrium: legal imperatives for sustainable development and habitat preservation in Shenzhen, China,” Urban Ecosyst., vol. 27, no. 6, pp. 2223–2243, 2024, doi: 10.1007/s11252-024-01588-0. [Google Scholar]
- R. Gupta, “GIS-Based Analysis of Land Surface Characteristics and Urban Heat Islands in Metropolitan Cities of India,” Int. J. Eng. Geosci., vol. 10, no. 3, pp. 440–455, 2025, doi: 10.26833/ijeg.1638818. [Google Scholar]
- P. Moharaj et al., “Dynamics of Water Stress in Bangalore, India: Exploring the Confluence of Geopolitical, Climatic, and Anthropogenic Factors,” J. Asian Afr. Stud., 2025, doi: 10.1177/00219096251336374. [Google Scholar]
- C. Y. Wai, P. Paresi, H.-W. Chau, and N. Muttil, “Experimental Analysis of Cool Roof Coatings as an Urban Heat Mitigation Strategy to Enhance Thermal Performance,” Buildings, vol. 15, no. 5, p. 685, 2025, doi: 10.3390/buildings15050685. [Google Scholar]
- P. M. Cuce, E. Cuce, and M. Santamouris, “Towards Sustainable and Climate-Resilient Cities: Mitigating Urban Heat Islands Through Green Infrastructure,” Sustainability, 2025. [Google Scholar]
- A. R. Siddiqui, R. Khan, and M. N. Akhtar, “Sustainable concrete solutions for green infrastructure development: A review,” J. Sustain. Constr. Mater. Technol., vol. 10, no. 1, pp. 108–141, 2025, doi: 10.47481/jscmt.1667793. [Google Scholar]
- R. Raman, P. Nedungadi, D. L. Dénes, and S. Manalil, “The role of forestry sciences in combating climate change and advancing sustainable development goals,” Front. For. Glob. Change, vol. 7, 2024, doi: 10.3389/ffgc.2024.1409667. [Google Scholar]
- K. Xu, G. Zou, and H. Hu, “Forest Carbon Sequestration Functions and Mitigation Strategies for Global Climate Change,” in Intechopen, 2025. doi: 10.5772/intechopen.1009089. [Google Scholar]
- G. Visvanathan, K. Patil, Y. Suryawanshi, V. Meshram, and S. Jadhav, “Mitigating urban heat island and enhancing indoor thermal comfort using terrace garden,” Sci. Rep., vol. 14, no. 1, 2024, doi: 10.1038/s41598-024-60546-0. [Google Scholar]
- A. Mathew et al., “Spatiotemporal dynamics of urban heat island effect and air pollution in Bengaluru and Hyderabad: implications for sustainable urban development,” Discov. Sustain., vol. 6, no. 1, 2025, doi: 10.1007/s43621-025-00860-3. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.

