Open Access
Issue
E3S Web Conf.
Volume 652, 2025
2nd International Conference on Sustainable Environment and Disaster Management (2nd SUSTAIN 2025)
Article Number 10004
Number of page(s) 14
Section Landscape Planning, Land Use and Land Cover
DOI https://doi.org/10.1051/e3sconf/202565210004
Published online 15 October 2025
  1. T. Sarastika, Yusuf Susena, and Dwi Kurniawan, “Prediksi Konversi Lahan Pertanian Berbasis Artificial Neural Network-Cellular Automata (Ann-Ca) Di Kawasan Sleman Barat,” J. Tanah dan Sumberd. Lahan, vol. 10, no. 2, pp. 471–482, 2023, doi: 10.21776/ub.jtsl.2023.010.2.30. [Google Scholar]
  2. E. F. Lambin et al., “The causes of land-use and land-cover change: Moving beyond the myths,” Glob. Environ. Chang., vol. 11, no. 4, pp. 261–269, 2001, doi: 10.1016/S0959-3780(01)00007-3. [Google Scholar]
  3. Badan Pusat Statistik Kabupaten Boyolali, 2023. Kabupaten Boyolali. [Google Scholar]
  4. M. Hartanto and A. A. Wibowo, “Analisis Perubahan Penutupan Lahan Periode Tahun 2014-2022 Serta Pengelolaannya Di Sub DAS Wiroko,” Dr. Diss. Univ. Muhammadiyah Surakarta, 2024. [Google Scholar]
  5. Badan Pusat Statistik Kabupaten Boyolali, 2025. Kabupaten Boyolali. [Google Scholar]
  6. F. Muwardi and A. Fadlil, “Sistem Pengenalan Bunga Berbasis Pengolahan Citra dan Pengklasifikasi Jarak,” J. Ilm. Tek. Elektro Komput. dan Inform., vol. 3, no. 2, p. 124, 2018, doi: 10.26555/jiteki.v3i2.7470. [Google Scholar]
  7. D. Setiady and P. Danoedoro, “Prediksi perubahan lahan pertanian sawah sebagian Kabupaten Klaten dan sekitarnya menggunakan cellular automata dan data penginderaan jauh,” J. Bumi Indones., vol. 5, no. 1, p. 79437, 2016. [Google Scholar]
  8. E. Hariyati, “Prediksi Perubahan Tutupan/Penggunaan Lahan Tahun 2036 Di Kecamatan Kotabumi Utara Menggunakan Model Cellular Automata,” Univ. Lampung, no. February, pp. 4–6, 2024. [Google Scholar]
  9. V. N. Fikriyah, D. Danardono, M. I. T. Sunariya, M. Cholil, T. A. Hafid, and M. I. Ismail, “Spatio-temporal analysis of built-up area and land surface temperature in Surakarta using Landsat imageries,” Sustinere J. Environ. Sustain., vol. 6, no. 2, pp. 92–101, 2022, doi: 10.22515/sustinerejes.v6i2.187. [Google Scholar]
  10. Y. S. Dianti, “Analisis Konversi Lahan Pertanian Menjadi Perumahan Di Kecamatan Pohjentrek Kabupaten Pasuruan,” Swara Bhumi, vol. 5, no. 8, pp. 1–6, 2020. [Google Scholar]
  11. S. Alhamda, H. Z. Hadibasyir, and M. GIS, “Analisis Perubahan Penggunaan Lahan Sawah dengan Daya Dukung Pangan Menggunakan Citra Sentinel 2A di Kabupaten Boyolali Tahun 2015 dan 2023,” Dr. Diss. Univ. Muhammadiyah Surakarta, 2023. [Google Scholar]
  12. M. Belihu, S. Tekleab, B. Abate, and W. Bewket, “Hydrologic response to land use land cover change in the Upper Gidabo Watershed, Rift Valley Lakes Basin, Ethiopia,” HydroResearch, vol. 3, pp. 85–94, 2020, doi: 10.1016/j.hydres.2020.07.001. [Google Scholar]
  13. S. Sangpradid, “APPLICATION OF A MULTI-LAYER PERCEPTRON NEURAL NETWORK TO SIMULATE SPATIAL-TEMPORAL LAND USE AND LAND COVER CHANGE ANALYSIS BASED ON CELLULAR AUTOMATA IN BURIRAM PROVINCE, THAILAND,” Environ. Eng. Manag. J., vol. 22, no. 5, pp. 917–931, 2023, doi: 10.30638/eemj.2023.074. [Google Scholar]
  14. D. N. S. Putri Goerataneng Sukmasari, “Analisis Kesesuaian Penggunaan Lahan Terhadap Rencana Pola Ruang Tahun 2023-2043 Di Kawasan Perkotaa,” Dr. Diss. (Universitas Muhammadiyah Surakarta), pp. 1–10, 2024. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.