Open Access
Issue
E3S Web Conf.
Volume 655, 2025
International Conference on Chemical and Material Engineering in conjunction with the International Symposium on Applied Chemistry (ICCME-ISAC 2025)
Article Number 01005
Number of page(s) 6
Section Chemical Engineering
DOI https://doi.org/10.1051/e3sconf/202565501005
Published online 27 October 2025
  1. M. Liang, B. Luo, L. Zhi, Application of graphene and graphene-based materials in clean energy- related devices, Int. J. Energy Res. 33 (2009) 1161–1170. https://doi.org/10.1002/er.1598. [Google Scholar]
  2. N.L. Panwar, S.C. Kaushik, S. Kothari, Role of renewable energy sources in environmental protection: A review, Renew. Sustain. Energy Rev. 15 (2011) 1513–1524. https://doi.org/10.1016/j.rser.2010.11.037. [Google Scholar]
  3. J. Raharjo, D. Panuh, W. Wan Daud, PERKEMBANGAN TEKNOLOGI MATERIAL PADA SEL BAHAN-BAKAR PADAT TEMPERATUR OPERASI MENENGAH, J. Sains Mater. Indones. 10 (2008) 28–34. [Google Scholar]
  4. A. Hasan, Aplikasi Sistem Fuel Cell Sebagai Energi Ramah Lingkungan Di Sektor Transportasi Dan Pembangkit, J. Teknol. Lingkung. BPPT 8 (2007). https://doi.org/10.29122/jtl.v8i3.435. [Google Scholar]
  5. O. Yamamoto, Solid oxide fuel cells: fundamental aspects and prospects, Electrochim. Acta 45 (2000) 2423–2435. https://doi.org/10.1016/S0013-4686(00)00330-3. [Google Scholar]
  6. S. Thangarasu, T.H. Oh, Recent Developments on Bioinspired Cellulose Containing Polymer Nanocomposite Cation and Anion Exchange Membranes for Fuel Cells (PEMFC and AFC), Polymers (Basel). 14 (2022). https://doi.org/10.3390/polym14235248. [Google Scholar]
  7. A. Heinzel, G. Bandlamudi, W. Lehnert, FUEL CELLS – PROTON-EXCHANGE MEMBRANE FUEL CELLS | High Temperature PEMFCs, in: J.B.T.-E. of E.P.S. Garche (Ed.), Elsevier, Amsterdam, 2009: pp. 951–957. https://doi.org/10.1016/B978-044452745-5.00855-8. [Google Scholar]
  8. D. Suteu, A.C. Blaga, C. Zaharia, R. Cimpoesu, A.C. Puițel, R.-E. Tataru-Farmus, A.M. Tanasă, Polysaccharides Used in Biosorbents Preparation for Organic Dyes Retaining from Aqueous Media, Polymers (Basel). 14 (2022). https://doi.org/10.3390/polym14030588. [Google Scholar]
  9. M. Fan, Fourier Transform Infrared Spectroscopy for Natural Fibres, in: S.M. Salih (Ed.), IntechOpen, London, 2012. https://doi.org/10.5772/35482. [Google Scholar]
  10. H. Thiam, M.Y. Chia, Q. Cheah, C.K.O.O. Chai-Hoon, S.-O. Lai, K. Chong, Proton conductivity and methanol permeability of Nafion-SiO2/SiWA composite membranes, AIP Conf. Proc. 1828 (2017). https://doi.org/10.1063/1.4979378. [Google Scholar]
  11. Z. Wu, G. Sun, W. Jin, H. Hou, S. Wang, Q. Xin, Membrane for direct methanol fuel cell, 313 (2008) 336–343. [Google Scholar]
  12. Y. Lin, H. Li, C. Liu, W. Xing, X. Ji, Surface- modified Nafion membranes with mesoporous SiO2 layers via a facile dip-coating approach for direct methanol fuel cells, J. Power Sources 185 (2008) 904–908. https://doi.org/10.1016/j.jpowsour.2008.08.067. [Google Scholar]
  13. K.R. Cooper, In situ pem fuel cell fuel: Fuel crossover and electrical short circuit measurement, 8 (2008) 34–35. [Google Scholar]
  14. T. Harmoko, N. Hidayati, H. Purnama, M. Mujiburohman, Composite membrane of sulfonated polyether ether ketone (sPEEK) – Chitosan for direct methanol fuel cell, 2020. https://doi.org/10.1063/1.5140917. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.