Issue |
E3S Web Conf.
Volume 40, 2018
River Flow 2018 - Ninth International Conference on Fluvial Hydraulics
|
|
---|---|---|
Article Number | 02054 | |
Number of page(s) | 7 | |
Section | River morphodynamics and restoration | |
DOI | https://doi.org/10.1051/e3sconf/20184002054 | |
Published online | 05 September 2018 |
Dune geometry estimation using apparent bedload velocity as predictor variable
University of Zagreb, Faculty of Civil Engineering, Water research department, 10000 Zagreb, Croatia
* Corresponding author: gordon.gilja@grad.hr
Dune formation in river systems influences sediment transport, flow characteristics, bank erosion, flood control, navigation and the protection of land and infrastructure. Research on dunes is mainly flume-based, and conclusions from such research are rarely, if at all, verified with field measurements. Dune formation and geometry in terms of height, length and steepness is most commonly correlated with averaged flow parameters as flow depth. Application of relations defined in flume conditions is limited due to stationary flow conditions and extrapolation issues for natural watercourses. It is reasonable to assume that apparent bedload velocity has significant influence on dune field formation due to nature of movement of sand particles across sandy riverbed. This research investigates applicability of apparent bedload velocity as argument in empirical relations for dune geometric characteristics.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.