Issue |
E3S Web Conf.
Volume 111, 2019
CLIMA 2019 Congress
|
|
---|---|---|
Article Number | 05007 | |
Number of page(s) | 5 | |
Section | Information and Communication Technologies (ICT) for the Intelligent Building Management | |
DOI | https://doi.org/10.1051/e3sconf/201911105007 | |
Published online | 13 August 2019 |
Validity of CO2 based ventilation design
1 International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
2 Department of Hydroaerodynamics and Hydraulic Machines, Technical University of Sofia, Sofia, Bulgaria
* Corresponding author: akm@byg.dtu.dk
The present ventilation design practice as well as the ventilation standards and building regulations are based on the assumption for complete mixing of air in occupied spaces. Required flow rate of outdoor air for dilution of metabolic CO2 generated by occupants is calculated to keep the CO2 concentration below certain required level. The CO2 concentration measured in the exhaust air or in the room but far from the occupants is assumed to be the same as the CO2 concentration in the air inhaled by the occupants. However, this assumption is seldom accurate, especially in spaces with closely seated occupants, such as classrooms, meeting rooms, etc. In such spaces the CO2 sources, i.e. the people, are close to each other and the CO2 concentration in the inhaled air may be much above the CO2 concentration level recommended as a limit in standards. This is because the upward free convection flow that exists around human body entrains the air with high CO2 concentration exhaled by seated people and move it to their breathing zone. Furthermore, the thermal flows generated by occupants’ body interact with the ventilation flow, which often results in insufficient dilution of the generated CO2 (as well as other pollution) and high levels of CO2 concentration at the breathing zone of occupants. This problem is discussed in the present paper in detail. The discussion is supported by results of measurements in a meeting room with mixing air distribution. People were used to generate metabolic CO2 and a breathing thermal manikin was used to measure accurately the CO2 concentration in the inhaled air. The results confirmed that inhaled CO2 concentration was much higher than the one at the exhaust and that there is need for changes in the present CO2 based ventilation design practice. Possible solutions are suggested.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.