Issue |
E3S Web Conf.
Volume 89, 2019
The 2018 International Symposium of the Society of Core Analysts (SCA 2018)
|
|
---|---|---|
Article Number | 02002 | |
Number of page(s) | 9 | |
Section | Improved SCAL techniques and Interpretation | |
DOI | https://doi.org/10.1051/e3sconf/20198902002 | |
Published online | 29 March 2019 |
Measurement of Spontaneous Imbibition Capillary Pressure, Saturation and Resistivity Index by Counter Current Technique at Net Reservoir Stress and Elevated Temperature
Weatherford Laboratories (Norway) AS, Stavanger
* corresponding author: Stefano.Pruno@weatherford.com
Capillary pressure and resistivity index spontaneous imbibition experiments by the porous plate method, in a core holder at elevated temperature and net reservoir stress, are both difficult and time consuming special core analysis measurements to perform. In this type of experiment, low capillary forces act against a low permeable porous plate and only one face of the cylindrical core sample is in capillary contact with the fluid saturated porous plate. In this paper, core samples having different lithology, petrophysical properties and wettability are analysed by counter current spontaneous imbibition, starting at initial water saturation (Swi), at net confining pressure and elevated temperature. Synthetic brine is used as the wetting phase and Isopar L mineral oil as the non-wetting phase. This methodology is applied to investigate and evaluate how to obtain more reliable, more efficient and faster saturation imbibition data combined with electrical measurements, during spontaneous imbibition measurements. Resistivity index (RI), saturation exponent (n) (by single saturation equilibrium point using Archie’s second law RI= Sw-n) and wettability information using representative fluids, confining pressure and temperature are also obtained by applying this specific counter current imbibition technique and improved procedural approach.
© The Authors, published by EDP Sciences, 2019
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.