Issue |
E3S Web Conf.
Volume 92, 2019
7th International Symposium on Deformation Characteristics of Geomaterials (IS-Glasgow 2019)
|
|
---|---|---|
Article Number | 02001 | |
Number of page(s) | 6 | |
Section | Laboratory Experimental Techniques: Element Scale | |
DOI | https://doi.org/10.1051/e3sconf/20199202001 | |
Published online | 25 June 2019 |
Development of vertical and horizontal disk transducers for wave velocity measurements in a large rectangular specimen
Institute of Industrial Science, The University of Tokyo, Japan
* Corresponding author: t-dutta@iis.u-tokyo.ac.jp
For the accurate design of structures subjected to both static and dynamic loadings, elastic wave velocity and small strain stiffness are essential parameters. Numerous techniques have been developed to estimate wave velocities of geomaterials. Bender elements which are widely adopted for wave velocity measurements are invasive in nature and are not suitable for coarse-grained materials. In the present study, new design configuration of disk transducer has been introduced to measure both vertical and horizontal wave velocities for coarse granular soils considering multidirectional oscillation of propagating waves. An innovative arrangement of both compression and shear type elements has been installed in a large-sized triaxial apparatus having rectangular specimens of size 236×236×500 mm to assess the wave velocities. The materials described are Toyoura sand (D50 = 0.24 mm) and Oiso gravel (D50 = 11.8 mm). This arrangement enables measurements of nine types of wave velocities, and thus the stiffness anisotropy to be quantified. For Oiso gravel, horizontal wave velocities are greater than vertical wave velocities for both shear and compression waves. For Toyoura sand, shear wave velocities are higher in horizontal direction of propagation, whereas similar compression wave velocities are observed from both horizontal and vertical directions.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.