Issue |
E3S Web Conf.
Volume 92, 2019
7th International Symposium on Deformation Characteristics of Geomaterials (IS-Glasgow 2019)
|
|
---|---|---|
Article Number | 16011 | |
Number of page(s) | 6 | |
Section | Numerical Modelling: THCM Coupling, Localisation, Boundary Value Problems | |
DOI | https://doi.org/10.1051/e3sconf/20199216011 | |
Published online | 25 June 2019 |
Numerical simulation of concrete pile groups' response bored in cemented sand deposit under axial static load testing
University of Technology Sydney, School of Civil and Environmental Engineering, 2007 Sydney, Australia
* Corresponding author: mehdi.aghayarzadeh@student.uts.edu.au
For a safe foundation to perform as desired, the ultimate strength of each pile must fulfil both structural and geotechnical requirements. Pile load testing is considered as a direct method of determining the ultimate bearing capacity of a pile. Pile groups are commonly used in foundation engineering and due to the difficulties and cost of full-scale load tests, most pile group tests are scaled down regardless of whether performed in the field or laboratory. In this paper, it is aimed to simulate the behaviour of concrete bored pile groups under axial static load testing using PLAXIS 3D software and to compare the obtained results with measured curves in an experimental study introduced in the literature. In numerical simulation, to account for the stiffness variation existing inside the pile group and to achieve a reasonable correlation between measured and predicted load-settlement curves three different analyses, including linear elastic, completely non-linear, and a combination of non-linear and linear analyses were performed. The results indicate that the combined non-linear and linear analysis seems a suitable analysis for pile group behaviour prediction.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.