Issue |
E3S Web Conf.
Volume 95, 2019
The 3rd International Conference on Power, Energy and Mechanical Engineering (ICPEME 2019)
|
|
---|---|---|
Article Number | 03006 | |
Number of page(s) | 5 | |
Section | Control System | |
DOI | https://doi.org/10.1051/e3sconf/20199503006 | |
Published online | 13 May 2019 |
An Investigation of a Nonlinear Fuel Oil Viscosity and Temperature Control System for Ships
1
Wuhan University of Technology, School of Energy and Power Engineering, 430063 Wuhan, China
2
Qingdao Harbour Vocational & Technical College, Department of Marine Engineering, 266404 Qingdao, China
In this paper, the differential equation of the fuel oil viscosity and temperature control system was derived, according to the working processes and principles of the heating of heavy oil in ocean vessels. By analyzing the characteristics of the heat transfer model, a multi-input coupling nonlinear heat transfer model was developed, in which the temperatures at the inlet and the outlet of the heavy oil heater were used as the state variables, while the openings of the regulating valve of the mixed oil tank and the steam flow rate regulating valve of the heater were used as the control inputs. This model can be decomposed into a single-input nonlinear system and single-input second-order linear system for further investigation, and the sliding mode variable structure controller can then be solved by performing linear reductions on the nonlinear model. Finally, using KING VIKW software, experiments were performed in order to examine the controlling performances of the PID and sliding mode variable structure ( SMVS ) controller respectively. The results show that the sliding mode variable structure controller exhibits a series of superiorities, which mainly include a small overshoot, fast response and strong anti-interference capability.
© The Authors, published by EDP Sciences, 2019
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.