Issue |
E3S Web Conf.
Volume 97, 2019
XXII International Scientific Conference “Construction the Formation of Living Environment” (FORM-2019)
|
|
---|---|---|
Article Number | 04061 | |
Number of page(s) | 9 | |
Section | Reliability of Buildings and Constructions | |
DOI | https://doi.org/10.1051/e3sconf/20199704061 | |
Published online | 29 May 2019 |
Experience in designing and operating the buildings located on subsiding and heaving soils of the Minusinsk Hollows
Khakas Technical Institute – SFU branch, Komarova 15, Abakan 655016 Russian Federation
* Corresponding author: Lacky_traine@mail.ru
The article presents the experience of design, expert research within the period of construction and operation of the buildings located on subsiding soils. It describes the experiment in conducting the organized soaking of a mounted house made of reinforced-concrete slabs and claydite-concrete panels. It shows the absence of danger of frost heaving while soaking the subsiding soils. There are tables demonstrating the expert studies during the inspections of deformable buildings and long-term observations over their behavior in freezing and thawing depending on the groundwater level and pressures under the bottom of the foundations. As a result of the analysis of long-term studies it has been established that the building load contributes to the reduction of frost heaving for sandy soils (fine and dust sands). In case of clayey soils, in contrast to the views on this problem emerged at the end of the 20th century, it is impossible to extinguish the migration process using pressure. If the migration flow slows down under the foundation bottom, it occurs due to the higher rate of soil freezing arising from the high thermal conductivity of the foundation body and the formation of vertical ice lenses on the borders of tension zones. The most important thing showed herein is that the thawing process in these lenses provokes the process of stability loss, where the soil protrudes from the foundation bottom. The long-term studies of frost heaving in a severe continental climate of the Minusinsk hollows enabled the development of the most effective direction of the anti-heave stabilization.
© The Authors, published by EDP Sciences, 2019
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.