Issue |
E3S Web Conf.
Volume 143, 2020
2nd International Symposium on Architecture Research Frontiers and Ecological Environment (ARFEE 2019)
|
|
---|---|---|
Article Number | 02025 | |
Number of page(s) | 4 | |
Section | Environmental Science and Energy Engineering | |
DOI | https://doi.org/10.1051/e3sconf/202014302025 | |
Published online | 24 January 2020 |
Analysis of Main Influencing Factors of the Wastewater Evaporation in Flue Duct
State Grid XinJiang Company Limited Electric Power Research Institute, Urumqi, Xinjiang 830011, P. R. China
Desulfurization wastewater has the characteristics of small discharge and high pollution, and must be strictly treated. To obtain the main factors affecting the evaporation characteristics of desulfurization wastewater in boiler flue, a 600MW unit of a coal-fired power plant in China was taken as an example. According to the theory of fluid mechanics and heat transfer, the numerical simulation method was used. The results show that the way the nozzle is installed on the upper wall of the flue inlet can enhance the evaporation effect of the desulfurization wastewater. It is also revealed that the influence of the flue gas flow rate on the droplet evaporation effect is relatively small. The smaller droplet diameter and the higher flue gas inlet temperature will obviously enhance the evaporation effect of the droplets in the flue. However these two factors will increase the operating cost and reduce the boiler thermal efficiency. Therefore, the values of the droplet diameter and the flue gas inlet temperature need to be further determined by technical and economic comparison.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.