Issue |
E3S Web Conf.
Volume 172, 2020
12th Nordic Symposium on Building Physics (NSB 2020)
|
|
---|---|---|
Article Number | 07008 | |
Number of page(s) | 7 | |
Section | Moisture performance of structures | |
DOI | https://doi.org/10.1051/e3sconf/202017207008 | |
Published online | 30 June 2020 |
Hygrothermal conditions in ventilated attics with different air change rates and ceiling constructions
1 Aalborg University, Department of the Built Environment, A.C. Meyers Vænge 15, 2450 Copenhagen, Denmark
2 Technical University of Denmark, DTU Civil Engineering, Brovej, Building 118, 2800 Kongens Lyngby, Denmark
3 Danish Technological Institute, Gregersensvej 1, 2630 Taastrup, Denmark
* Corresponding author: marmo@build.aau.dk
A recently Danish study reported that no vapour barrier is needed in ceilings, if the attic is well ventilated and the ceiling towards the dwelling is airtight. Based on that study, new investigations were initiated with focus on the hygrothermal behaviour in ventilated attics with different air change rates. A test house with three sets of four different ceiling constructions – all airtight – was used in this study. The ventilation rate was reduced in two of the sets with approx. 35 % and 50 %, respectively. Air change rates were measured with tracer gas. Furthermore, temperature and relative humidity was measured every hour. Measurements in similar ceilings with mineral wool or cellulose-based insulation material show that hygroscopic properties of the insulation have very limited effect on relative humidity. Furthermore, only at low ventilation rate the effect of a vapour barrier could be measured with minor impact. Based on the short-measured period the calculations of the risk of mould growth showed no risk. The results indicate that even when the ventilation is reduced by 50 %, the ventilated attic still performs well if the ceiling is highly airtight. However, the importance of vapour barriers becomes more important at lower air change rates.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.