Issue |
E3S Web Conf.
Volume 172, 2020
12th Nordic Symposium on Building Physics (NSB 2020)
|
|
---|---|---|
Article Number | 07007 | |
Number of page(s) | 7 | |
Section | Moisture performance of structures | |
DOI | https://doi.org/10.1051/e3sconf/202017207007 | |
Published online | 30 June 2020 |
Treatment of condensation in sandwich panels without known vapour resistance of sealant
Slovenian national Building and Civil Engineering Institute, 1000 Ljubljana, Slovenia
* Corresponding author: gregor.vidmar@zag.si.
In order to calculate amount of interstitial condensation in a building envelope, water vapour resistance of each layer is of importance. Once having it, 1D calculation according to ISO 13788 with monthly average vapour pressures can be applied. In EN 14509 sandwich panels are considered to be impermeable for water vapour, thus (according to the standard) water vapour cannot enter from outside and condensate in the panels. But it is not always true for real sandwich panels, because joints between neighbouring panels can cause non-neglecting water vapour bridges. Although in measurements of linear water vapour transmittance of the joints (Ψv) stationary boundary vapour pressures can be applied, the measurements can be long lasting. We shortened time needed to get Ψv performing simulations in Delphin 6.0. We simulated panels and steel sheets with joints using constant boundary vapour pressures and compared the results with the results of measurements on the equivalent systems.
In systems under consideration a sealant in built-in-state, located at a joint of a sandwich panel, is a compressed EPDM tube. It is impossible to directly measure its effective μ according to ISO 12572. In the paper we study to which precision it is possible to determine it using measurements and simulations. Once having effective μ of the sealant (if all other necessary material parameters available) one can simulate condensation in envelopes including sandwich panels in 2D according to EN 15026 using hourly climatic data. Another goal of the study was determination of differences in resulting Ψv values when varying narrowest part of the gap dGAP at the joint in the panels without any sealant. Results confirm significant sensibility of Ψv to variations of dGAP.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.