Issue |
E3S Web Conf.
Volume 184, 2020
2nd International Conference on Design and Manufacturing Aspects for Sustainable Energy (ICMED 2020)
|
|
---|---|---|
Article Number | 01092 | |
Number of page(s) | 4 | |
DOI | https://doi.org/10.1051/e3sconf/202018401092 | |
Published online | 19 August 2020 |
Effect of Durability properties on Geopolymer concrete – A Review
1 PG student, Civil Engineering Department, GRIET, Hyderabad, India.
2 Associate Professor, Civil Engineering Department, GRIET, Hyderabad, India.
* Corresponding author: sri.sri001@gmail.com Nivedithamadanala@gmail.com sri.sri001@gmail.com
Geopolymer concrete is prepared by reacting silicate as well as aluminate consisting materials with a caustic activator. More often, waste materials such as GGBS, fly ash, slag from metal and iron production are used. Recent investigations adding new materials like Alccofine, which improves the properties of geopolymer concrete even at ambient temperature condition. This research paper presents a details literature survey on the durability properties of geopolymer concrete. Various research literatures are previewed on durability of geopolymer concrete with the addition of different supplementary cementious materials as their necessity is increasing due to insistent constituents. Past studies from the literature reviews suggested that replacement of cement with chemical and mineral admixtures enhanced the properties of strength and durability of concrete. The micro structures, Morphological structures by SEM, lower shrinkage, higher mechanical strengths, superior durability with environmental sustainability are observed. XRD studies shown enhanced polymerisation reaction which is responsible for development of strength. Elevated temperatures and Surface deterioration are controlled in GPC than OPC. Geopolymer concrete provides better resistance for specimens to chemical attack and also water absorption, sorptivity, porosity have good influence to the durability properties in ambient curing conditions compared to conventional concrete.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.