Issue |
E3S Web Conf.
Volume 190, 2020
1st International Conference on Renewable Energy Research and Challenge (ICoRER 2019)
|
|
---|---|---|
Article Number | 00028 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/e3sconf/202019000028 | |
Published online | 23 September 2020 |
Rooftop Photovoltaic-Battery Systems to Mitigate Overvoltage and Under Voltage in a Residential Low Voltage Distribution System
1
Green-Smart Energy Technology (G-SET) Research Group, Faculty of Engineering at Sriracha, Kasetsart University Sriracha Campus, Thailand
2
Provincial Electricity Authority (PEA), Thailand
* Corresponding author: umarin@eng.src.ku.ac.th
High penetration of rooftop photovoltaic systems in a residential low voltage distribution system has to be controlled in order to maintain stable voltage condition. Energy storage systems, such as batteries, can be used to absorb excess energy of photovoltaic systems and to shave peak load during on-peak time. This paper proposes guiding principles for the incorporation of energy storage systems into a residential low voltage distribution system with high penetration of rooftop photovoltaic systems. Real residential distribution system circuits and all parameters from the Geographic Information System database of the Provincial Electricity Authority in Thailand were used for simulation analysis to study the application of energy storage systems for regulating voltage in a range of the nominal voltage by 10 %. Solar radiation data from the PVGIS were used. The voltage results were simulated by using the DIgSILENT Power Factory program. Based on the simulation, it was found that the overvoltage and under voltage protection and energy loss reduction could be achieved by (i) installing small battery systems in households and (ii) installing battery stations within the vicinity of the transformer or the weakest point of the circuit.
Key words: battery / rooftop photovoltaic system / overvoltage / peak shaving / under voltage
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.