Issue |
E3S Web Conf.
Volume 194, 2020
2020 5th International Conference on Advances in Energy and Environment Research (ICAEER 2020)
|
|
---|---|---|
Article Number | 04050 | |
Number of page(s) | 7 | |
Section | Environmental Protection and Pollution Control | |
DOI | https://doi.org/10.1051/e3sconf/202019404050 | |
Published online | 15 October 2020 |
Mechanisms of electrokinetic technology to remediate different soils contaminated by cadmium
1 Environmental Engineering of City Construction Department, Wenhua College, Wuhan 430074, China
2 Guangzhou Institutes of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
* Corresponding author: fangzhangwh@163.com
Five typical soils were selected as Cd-contaminated media in an electrokinetic remediation experiment, to reveal comprehensive relationships between soil physicochemical properties and electrokinetic remediation. Results showed that after 20 days of remediation, removal efficiencies of Cd from red soil, black soil, yellow brown soil, fluvo-aquic soil, and paddy soil were 80.8%, 79.3%, 78.2%, 62.7%, and 74.1%, respectively. Levels of soil pH, conductivity, cation exchange capacity in fluvo-aquic soil and paddy soil treatments were generally higher than the other three types of soils, which indicated some connections between Cd removal efficiencies and the above soil characteristics. Pearson correlation analysis showed that soil H+ concentration was significantly correlated with Cd concentration and soil cation exchange capacity, and the correlation coefficients were -0.462 and -0.457, respectively. It is confirmed that H+ concentration is one of the important factors affecting the electrokinetic remediation of soil polluted by Cd.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.