Open Access
Issue
E3S Web Conf.
Volume 194, 2020
2020 5th International Conference on Advances in Energy and Environment Research (ICAEER 2020)
Article Number 04050
Number of page(s) 7
Section Environmental Protection and Pollution Control
DOI https://doi.org/10.1051/e3sconf/202019404050
Published online 15 October 2020
  1. M.F. Chen. Review on heavy metal remediation technology of soil and groundwater at industrially contaminated site in China [J]. China Academic Journal, 327-335(2014). [Google Scholar]
  2. R.A. Yu, L.F. He, R.D. Cai, et al. Heavy metal pollution and health risk in China. Global Health Journal, 1:47-55(2017) [Google Scholar]
  3. Y. Huang, L.Y. Wang, W.J. Wang. Current status of agricultural soil pollution by heavy metals in China: A meta-analysis. Science of The Total Environment, 651:3034-3042(2019) [Google Scholar]
  4. Z. Li, Z. Ma, T.J. van der Kuijp, et al. A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Sci Total Environ., 468-469: 843-853 (2014) [Google Scholar]
  5. L. Järup, T. Alfvén, Low level cadmium exposure, renal and bone effects—the OSCAR study [J]. Bio. Metals, 17(5): 505-509 (2004) [Google Scholar]
  6. R.K. Zalups, S. Ahmad. Molecular handling of cadmium in transporting epithelia [J]. Toxicol. Appl. Pharmacol., 186, 3: 163-188 (2003) [Google Scholar]
  7. R. Lageman. Electro-reclamation applications in the Netherlands [J]. Environ. Sci. Technol., 27(13): 2648-2650(1993) [Google Scholar]
  8. J.C. Shu, X.L. Sun, R.L. Liu, et al. Enhanced electrokinetic remediation of manganese and ammonia nitrogen from electrolytic manganese residue using pulsed electric field in different enhancement agents [J]. Ecotoxicol. Environ. Saf., 171:523-529(2019) [Google Scholar]
  9. A. Selvi, R. Aruliah. A statistical approach of zinc remediation using acidophilic bacterium via an integrated approach of bioleaching enhanced electrokinetic remediation (BEER) technology [J]. Chemosphere 207: 753-763 (2018) [Google Scholar]
  10. G. Gappai, G. De Gioannis, A. Muntoni, D. Spiga, J.J.P. Zijlstra. Combined use of a transformed red mud reactive barrier and electrokinetics for remediation of Cr/As contaminated soil [J]. Chemosphere, 86: 400-418(2012) [Google Scholar]
  11. Z.P. Cai, J. van Doren, Z.Q. Fang, et al. Improvement in electrokinetic remediation of Pb-contaminanted soil near lead acid battery factory. Trans. Nonferrous Met. Soc. China, 25: 3088-3095(2015) [Google Scholar]
  12. L.S. Wang, L.H. Huang, H.B. Xia, et al. Application of a multi-electrode system with polyaniline auxiliary electrodes for electrokinetic remediation of chromium-contaminated soil [J]. Separation & Purification Technology(2019) [Google Scholar]
  13. L. Cang, G.P. Fan, D.M. Zhou, Q.Y. Wang. Enhanced-electrokinetic remediation of copper–pyrene co-contaminated soil with different oxidants and pH control [J]. Chemosphere, 90(8) : 2326-2331 (2013) [Google Scholar]
  14. D.M. Zhou, C.F. Deng, L. Cang, et al. electrokinetic remediation of a Cu-Zn contaminated red soil by controlling the voltage and conditioning catholyte pH, Chemosphere, 61: 519-527(2005) [Google Scholar]
  15. K. Popov, V. Yachmenev, A. Kolosov, et al. Effect of soil electroosmotic flow enhancement by chelating reagents [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 160:135-140(1999) [Google Scholar]
  16. C. Cameselle. Enhancement of electro-osmotic flow during the electrokinetic treatment of a contaminated soil [J]. Electrochim. Acta., 181: 31-38 (2015) [Google Scholar]
  17. E. Gidarakos, A. Giannis, Chelate agents enhanced eletrokinetic remediation for removal cadmium and zinc by conditioning catholyte pH. Water Air Soil Pollut., 172: 295-312 (2006) [Google Scholar]
  18. J. Gao, Q.S. Luo, C.B. Zhang, B.Z. Li, L. Meng. Enhanced electrokinetic removal of cadmium from sludge using a coupled catholyte circulation system with multilayer of anion exchange resin. Chemical Engineering Journal, 234:1-8(2013) [Google Scholar]
  19. C.H. Weng, Y.T. Lin, T.Y. Lin, and C.M. Kao, Enhancement of Electrokinetic Remediation of hyper-Cr(VI) Contaminated Clay by Zero-Valent Iron, J. Hazard. Mater., 149 (2): 292-302, (2007) [Google Scholar]
  20. J.S. Yang, M.J. Kwon, J. Choi, K. Baek, E.J. Loughlin. The transport behavior of As, Cu, Pb, and Zn during electrokinetic remediation of a contaminated soil using electrolyte conditioning [J]. Chemosphere, 117:79-86(2014) [Google Scholar]
  21. H.P. Xiao, Q.Y. Tu, L.H. Wu, et al. Influence of several typical soils on removal of Cadmium contaminants during electrokinetic remediation [J]. Chinese J. Environ. Eng., 11(2): 1205-1210(2017). [Google Scholar]
  22. S.D. Bao, R.H. Shi. Soil Agriculturalization Analysis [M]. Beijing: Agriculture Press, 1992. [Google Scholar]
  23. Y.X. Zhang, D. Li, Z.Y. Zhang, et al. A comparison study of two methods for mensuration of soil cation exchange capacity [J]. Guizhou Forestry Science and Technology, 38(2):45-49(2010). [Google Scholar]
  24. GB/T17141-1997, Soil quality: Determination of lead, cadmium-Graphite furnace atomic absorption spectrophotometry. National standard of the PR China. [Google Scholar]
  25. S.U. Jo, D.H. Kim, J.S. Yang, et al. Pulse-enhanced electrokinetic restoration of sulfate-containing saline greenhouse soil [J]. Electrochim. Acta, 86: 57-62(2012) [Google Scholar]
  26. A.Z. Al-Hamdan, K.R. Reddy. Transient behavior of heavy metals in soils during electrokinetic remediation [J]. Chemosphere, 71(5): 860-871(2008) [Google Scholar]
  27. D.M. Zhou, L. Cang, C.F. Deng. Influence of complexes and acidity control on electrokinetic processes of soil chromium [J]. China Environ. Sci., 25(1):10-14 (2005) [Google Scholar]
  28. J. Hamed, Y.B. Acar, R.J. Gale. Pb (II) Removal from Kaolinite by Electrokinetics[J]. J. Geotech. Eng., 117(2):241-271 (1991) [Google Scholar]
  29. C.H. Weng, and C. Yuan, Removal of Cr(III) from clay soils by electrokinetics, Environ. Geochem. and Health, 23(3): 281-285 (2001) [Google Scholar]
  30. Á. Yustres, R. López-Vizcaíno, V. Cabrera, M.A. Rodrigo, V. Navarro. Donnan-ion hydration model to estimate the electroosmotic permeability of clays. Electrochimica Acta. 355(2020) [Google Scholar]
  31. C.H. Weng, Y.T. Lin, C. Yuan, Y.H. Lin, Dewatering of bio-sludge from industrial wastewater plant using an electrokinetic-assisted process: Effects of electrical gradient, Sep. Purif. Technol., 117: 35-40 (2013) [Google Scholar]
  32. I. Hassan, E. Mohamedelhassan, E.K. Yanful. Solar powered eletrokinetic remediation of Cu polluted soil using a novel anode configuration. Electrochim. Acta 181: 58-67 (2015) [Google Scholar]
  33. W.H. Zhang, L.W. Zhuang, L.Z. Tong, et al. Electro-migration of heavy metals in an aged electroplating contaminated soil affected by the coexisting hexavalent chromium [J]. Chemosphere, 86(8): 809-816(2012) [Google Scholar]
  34. C. Cameselle, A. Pena. Enhanced electromigration and electro-osmosis for the remediation of an agricultural soil contaminated with multiple heavy metals [J]. Process Saf. Environ., 104(A): 209-217 (2016) [Google Scholar]
  35. W.W. Yang, L.P. Pan, C.L. Zhang, et al. Effects of biomass carbon on cadmium bioavailability and atrazine dissipation in contaminated soil [J]. Chinese J. Environ. Eng., 9(12): 6141-6146(2015). [Google Scholar]
  36. J.T.F. Ashley. Adsorption of Cu (II) and Zn (II) by estuarine, riverine and terrestrial humic acid [J]. Chemosphere, 33(9): 2175-2187(1996) [Google Scholar]
  37. M. Balabane, F. van Oort. Metal enrichment of particulate organic matter in arable soils with low metal con tamination [J]. Soil Biol. Biochem., 34:1513-1516(2002) [Google Scholar]
  38. E.F. Covelo, F.A. Vega, M.L. Andrade. Competitive sorption and desorption of heavy metals by individual soil components [J]. J. Hazard. Mater., 140(1/2): 308-315 (2007) [Google Scholar]
  39. M.K. Zhang, L.P. Wang. Impact of heavy metals pollution on soil organic matter accumulation [J]. Chinese J. Appl. Ecol., 18(7):1479-1483(2007). [Google Scholar]
  40. R. Iannelli, M. Masi, A. Ceccarini, et al. Electrokinetic remediation of metal-polluted marine sediments: experimental investigation for plant design [J]. Electrochim. Acta, 181(1):146-159 (2015) [Google Scholar]
  41. R. López Vizcaíno, A. Yustres, L. Asensio, et al. Enhanced electrokinetic remediation of polluted soils by anolyte pH conditioning [J]. Chemosphere, 199: 477-485(2018) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.