Issue |
E3S Web Conf.
Volume 195, 2020
4th European Conference on Unsaturated Soils (E-UNSAT 2020)
|
|
---|---|---|
Article Number | 01019 | |
Number of page(s) | 7 | |
Section | Field Studies and Engineering Applications | |
DOI | https://doi.org/10.1051/e3sconf/202019501019 | |
Published online | 16 October 2020 |
Water retention and characteristic curves representing tropical clay soils from Africa
1 Civil Engineering Department, Cambridge University, United Kingdom
2 Civil and Architectural Engineering Department, Qatar University, Qatar
3 Deparment of Engineering, Durham University, United Kingdom
* Corresponding author: kmaa4@cam.ac.uk
Soil water retention curves (SWRCs) form an essential component of frameworks coupling the hydromechanical behaviour of unsaturated soils. The curves describe how suction changes with variables such as degree of saturation, void ratio and volumetric/gravimetric water content. SWRCs can be determined from incrementally drying initially saturated reconstituted samples to a final residual state, thus developing the primary drying curve (PDC). The primary wetting curve (PWC) is established from subsequent incremental wetting from residual state and is hysteretic compared with the PDC. SWRCs for reconstituted, high-plasticity, tropical clays from Africa (Sudan, Tanzania and South Africa) will be produced using suction measuring instruments, a tensiometer, filter paper and a dew point potentiometer. The development of SWRCs under various subsequent cycles of drying will be presented and discussed along with details concerning volumetric changes and cracking during drying. In order to investigate the uniqueness of the PDC and PWC and the effect of initial void ratio, SWRCs will be determined for samples formed by reconstituted from slurry under different applied energy levels.
© The Authors, published by EDP Sciences 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.