Issue |
E3S Web Conf.
Volume 252, 2021
2021 International Conference on Power Grid System and Green Energy (PGSGE 2021)
|
|
---|---|---|
Article Number | 02025 | |
Number of page(s) | 5 | |
Section | Research and Development of Electrical Equipment and Energy Nuclear Power Devices | |
DOI | https://doi.org/10.1051/e3sconf/202125202025 | |
Published online | 23 April 2021 |
Silicon content prediction of hot metal in blast furnace based on attention mechanism and CNN-IndRNN model
School of software engineer, Chongqing university of post and communication, Chongqing 400065
1* Correspondence author of this paper
Corresponding author’s e-mail: wanggp@cqupt.edu.cn
The stability of blast furnace temperature is an important condition to ensure the efficient production of hot metal. Accurate prediction of silicon content in hot metal is of great significance to the control of blast furnace temperature in iron and steel plants. At present, the accuracy of most silicon prediction models can only be guaranteed when the furnace condition is stable. However, due to many factors affecting the silicon content in hot metal of blast furnace, and there are large noises, large delays and large fluctuations in the data, the previous prediction results are of limited guiding significance to the actual production. In this paper, combined with the actual situation, the convolution neural network is used to extract the furnace condition characteristics, and then combined with the attention mechanism and the IndRNN model to get the prediction results, so that the prediction can better adapt to the fluctuating data set. The experimental results show that the prediction error of this model is lower than that of other models, which provides a new solution for the research of silicon content in hot metal of blast furnace.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.