Issue |
E3S Web Conf.
Volume 294, 2021
2021 6th International Conference on Sustainable and Renewable Energy Engineering (ICSREE 2021)
|
|
---|---|---|
Article Number | 01003 | |
Number of page(s) | 5 | |
Section | Renewable Energy and Application | |
DOI | https://doi.org/10.1051/e3sconf/202129401003 | |
Published online | 26 July 2021 |
Design and optimization of a small horizontal axis wind turbine using BEM theory and tip loss corrections
Mechanical Engineering Department, Mohammadia School of Engineers, Mohammed V university, Rabat, Morocco
* Corresponding author: somayayounoussi@research.emi.ac.ma
In this paper, an optimization approach of a small horizontal axis wind turbine based on BEM theory including De Vries and Shen et al. tip loss corrections is proposed. The optimal blade geometry was obtained by maximizing the power coefficient along the blade using the optimal angle of attack and the optimal tip speed ratio. The Newton’s iterative method applied to axial induction factor was used to solve the problem. This study was conducted for a NACA4418 small wind turbine, at low wind velocity. Among the two used tip loss corrections, the De Vries correction was found to be the most suitable for this blade optimization method. The optimal design was obtained for a tip speed ratio of 5 and has recorded a power coefficient equal to 0.463.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.