Issue |
E3S Web Conf.
Volume 300, 2021
2021 2nd International Conference on Energy, Power and Environmental System Engineering (ICEPESE2021)
|
|
---|---|---|
Article Number | 01008 | |
Number of page(s) | 11 | |
Section | Energy and Power Engineering | |
DOI | https://doi.org/10.1051/e3sconf/202130001008 | |
Published online | 06 August 2021 |
Design and simulation of current-fed dual-active full-bridge DC/DC converter control system applied to proton exchange membrane fuel cell
State Key Laboratory of Advanced Power Transmission Technology (Global Energy Interconnection Research Institute Co., Ltd.), Changping District, Beijing 102209, China
* Corresponding author: daifengjiao@geiri.sgcc.com.cn
Proton exchange membrane fuel cells (PEMFC) have been increasingly applied in clean and efficient distributed power generation systems in recent years. However, the output characteristics of PEMFC are relatively soft due to the influence of multiple polarization overvoltage. With the increasement of current density, the output voltage shows to be a nonlinear downward trend. In addition, in order to ensure the lifetime of PEMFC, the output ripple current is often concerned. Considering above characteristics, in order to achieve efficient power transmission of the PEMFC system, this paper adopts the current-fed dual-active full-bridge (DAB) DC/DC converter topology, which can achieve soft switching of most switches. Furthermore, it can restrain the characteristics of the current ripple. Hence, the power transmission efficiency and current ripple requirements of PEMFC are fulfilled. Finally the current-fed DAB is designed and simulated through PSIM. The C-block is applied to simulate the PEMFC nonlinear power supply according to the actual PEMFC parameters. In order to achieve efficient constant power transmission of the nonlinear PEMFC, a novel power closed-loop control strategy is proposed.
Key words: Current-fed DAB / Proton exchange membrane fuel cell / Soft switch / DC/DC converter
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.