Issue |
E3S Web Conf.
Volume 318, 2021
Second International Conference on Geotechnical Engineering – Iraq (ICGE 2021)
|
|
---|---|---|
Article Number | 01018 | |
Number of page(s) | 9 | |
Section | Developments in Geotechnical Engineering | |
DOI | https://doi.org/10.1051/e3sconf/202131801018 | |
Published online | 08 November 2021 |
Numerical Modelling of Axially Loaded Helical Piles: Compressive Resistance
Civil Engineering Department, University of Technology, Baghdad, Iraq
a bce.19.61@grad.uotechnology.edu.iq
b 40068@uotechnology.edu.iq
c 40161@uotechnology.edu.iq
Helical piles are foundation systems used to support compression, tension, and lateral loads. However, this type of piles was used around the world for more than 25 years. Its behavior, especially in Iraq, is still unknown and scare. The present study is carried out by analyses of this type of pile using the finite element method. Modeling of the helical pile geometry has been proposed using the finite element through the computer program Plaxis 3D. Parametric analyses were also performed. The main parametric study is the effect of a number of the helix, spacing between helix, the helix diameter, and helix configuration. The main conclusion is that as the number of helix increases, the bearing capacity increases further more than the higher the distance between helix, the higher bearing capacity. Maximum pile capacity with the case of three-helix increased by 115.4 %compared to the case without helix. Pile capacity with the case of spacing 3.5 D reached 130.7 % compared to the case of spacing 0.5 D. The value of displacement decreased with increasing spacing between the helices, while the value of displacement increased with the decrease in the spacing between the helices for top, middle, and bottom helix.
Key words: Helical pile / Numerical model / Number of a helix / Helix spacing / Changing diameter helix / Effect location of a helix
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.