Issue |
E3S Web Conf.
Volume 430, 2023
15th International Conference on Materials Processing and Characterization (ICMPC 2023)
|
|
---|---|---|
Article Number | 01248 | |
Number of page(s) | 16 | |
DOI | https://doi.org/10.1051/e3sconf/202343001248 | |
Published online | 06 October 2023 |
Heat Transfer Analysis using Finite Element Method under Convective Boundary Condition
Department of Basic Science & Humanities, MPSTME, SVKM’s NMIMS, Mumbai-56, Maharashtra, India
* Corresponding author: Sheetal.gonsalves@nmims.edu
The model in this study scrutinizes the effect of convective boundary conditions on the flow of a nanofluid across permeable flat plate. The fundamental equations get altered into a nonlinear form through choosing appropriate similarity transformations. In the process, they are solved mathematically by substantiated FEM code through use of variational finite element method. The outcomes clearly show the characteristics of relevant parameters such as temperature and velocity profiles. When the numerical analysis is evaluated in context of formerly published information, the reliability of the numerical code is conformed. Its found that there is a surge in thermal conductivity when proportion of nanoparticles rises in the fluid. Permeability of plate has a significant influence on the heat transfer and skin friction. The investigation supports the possibility of extending the work to flows of non-Newtonian fluid, three dimensional and for consideration of pressure gradients on arbitrary surfaces. The results practically aid the design of heat transfer systems for futuristic technology involving heat enhancement.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.