Open Access
Issue
E3S Web Conf.
Volume 430, 2023
15th International Conference on Materials Processing and Characterization (ICMPC 2023)
Article Number 01248
Number of page(s) 16
DOI https://doi.org/10.1051/e3sconf/202343001248
Published online 06 October 2023
  1. Choi, S. U. S., Singer, D. A., & Wang, H. P.: Developments and applications of non-Newtonian flows, Asme Fed, 66, (1995), 99-105. [Google Scholar]
  2. Masuda, H., Ebata, A., & Teramae, K.: Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles, Dispersion of Al2O3, SiO2 and TiO2 ultra-fine particles, (1993), 227-233. [Google Scholar]
  3. Godson, L., Raja, B., Lal, D. M., & Wongwises, S. E. A.: Enhancement of heat transfer using nanofluids—an overview, Renewable and sustainable energy reviews, 14(2), (2010), 629-641. [CrossRef] [Google Scholar]
  4. Yu, W., France, D. M., Routbort, J. L., & Choi, S. U.: Review and comparison of nanofluid thermal conductivity and heat transfer enhancements, Heat transfer engineering, 29(5), (2008), 432-460. [CrossRef] [Google Scholar]
  5. Ungar, E., & Erickson, L.: Assessment of the use of nanofluids in spacecraft active thermal control systems, In AIAA SPACE (2011) Conference & Exposition (p. 7328). [Google Scholar]
  6. Bég, O. A., & Tripathi, D.: Mathematica simulation of peristaltic pumping with double-diffusive convection in nanofluids: a bio-nano-engineering model, Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 225(3), (2011), 99-114. [CrossRef] [Google Scholar]
  7. Bég, T. A., Rashidi, M. M., Bég, O. A., & Rahimzadeh, N.: Differential transform semi-numerical analysis of biofluid-particle suspension flow and heat transfer in non-Darcian porous media, Computer methods in biomechanics and biomedical engineering, 16(8), (2013), 896-907. [CrossRef] [PubMed] [Google Scholar]
  8. Chang, H., & Chang, Y. C. : Fabrication of Al2O3 nanofluid by a plasma arc nanoparticles synthesis system, Journal of Materials Processing Technology, 207(1-3), (2008), 193-199. [CrossRef] [Google Scholar]
  9. Sani, E., Barison, S., Pagura, C., Mercatelli, L., Sansoni, P., Fontani, D., ... & Francini, F. : Carbon nanohorns-based nanofluids as direct sunlight absorbers, Optics Express, 18(5), (2010), 5179-5187. [CrossRef] [PubMed] [Google Scholar]
  10. Van Devener, B., & Anderson, S. L.: Breakdown and combustion of JP-10 fuel catalyzed by nanoparticulate CeO2 and Fe2O3, Energy & Fuels, 20(5), (2006), 1886-1894. [CrossRef] [Google Scholar]
  11. Allen, C., Mittal, G., Sung, C. J., Toulson, E., & Lee, T.: An aerosol rapid compression machine for studying energetic-nanoparticle-enhanced combustion of liquid fuels, Proceedings of the Combustion Institute, 33(2), (2011), 3367-3374. [CrossRef] [Google Scholar]
  12. Assael, M. J., Antoniadis, K. D., Wakeham, W. A., & Zhang, X.: Potential applications of nanofluids for heat transfer, International Journal of Heat and Mass Transfer, 138, (2019), 597-607. [CrossRef] [Google Scholar]
  13. Vaszi, A. Z., Elliott, L., Ingham, D. B., & Pop, I.: Conjugate free convection above a heated finite horizontal flat plate embedded in a porous medium, International journal of heat and mass transfer, 45(13), (2002), 2777-2795. [CrossRef] [Google Scholar]
  14. Stokes, V. K.: Couple stresses in fluids, In Theories of Fluids with Microstructure, Springer, Berlin, Heidelberg, (1984), 34-80. [Google Scholar]
  15. Stokes, V. K., Theories of fluids with microstructure, Springer, New York, (1984). [CrossRef] [Google Scholar]
  16. Soundalgekar, V. M.: Free convection effects on the Stokes problem for an infinite vertical plate, Asme, (1977), 499-501. [Google Scholar]
  17. Siegel, R.: Transient free convection from a vertical flat plate, Trans. Asme, 80(2), (1958), 347. [Google Scholar]
  18. Goldstein, R. J., & Eckert, E. R. G.: The steady and transient free convection boundary layer on a uniformly heated vertical plate, International Journal of Heat and Mass Transfer, 1(2-3), (1960), 208-218. [CrossRef] [Google Scholar]
  19. Rana, P., & Bhargava, R.: Numerical study of heat transfer enhancement in mixed convection flow along a vertical plate with heat source/sink utilizing nanofluids, Communications in Nonlinear Science and Numerical Simulation, 16(11), 2011, 4318-4334. [CrossRef] [Google Scholar]
  20. Kuznetsov, A. V., & Nield, D. A.: The Cheng–Minkowycz problem for natural convective boundary layer flow in a porous medium saturated by a nanofluid: a revised model, International Journal of Heat and Mass Transfer, 65, (2013), 682-685. [CrossRef] [Google Scholar]
  21. Aziz, A., & Khan, W. A.: Natural convective boundary layer flow of a nanofluid past a convectively heated vertical plate, International Journal of Thermal Sciences, 52, 2012, 83-90. [CrossRef] [Google Scholar]
  22. Turkyilmazoglu, M., & Pop, I.: Heat and mass transfer of unsteady natural convection flow of some nanofluids past a vertical infinite flat plate with radiation effect, International Journal of Heat and Mass Transfer, 59, (2013), 167-171. [CrossRef] [Google Scholar]
  23. Makinde, O. D.: Effects of viscous dissipation and Newtonian heating on boundary-layer flow of nanofluids over a flat plate, International Journal of Numerical Methods for Heat & Fluid Flow,(2013). [Google Scholar]
  24. Loganathan, P., Chand, P. N., & Ganesan, P.: Transient natural convective flow of a nanofluid past a vertical plate in the presence of heat generation, Journal of Applied Mechanics and Technical Physics, 56(3), (2015), 433-442. [CrossRef] [Google Scholar]
  25. Vemula, R., Chamkha, A. J., & Mallesh, M. P.: Nanofluid flow past an impulsively started vertical plate with variable surface temperature, International Journal of Numerical Methods for Heat & Fluid Flow, (2016). [Google Scholar]
  26. Othman MI, Mahdy AM : Numerical studies for solving a free convection boundary–layer flow over a vertical plate, Mechanics and Mechanical Engineering, 22(1), (2018), 41-8. [CrossRef] [Google Scholar]
  27. S. Saranya, P. Ragupathi, B. Ganga, R.P. Sharma, A.K. Abdul: Hakeem,Non-linear radiation effects on magnetic/non-magnetic nanoparticles with different base fluids over a flat plate, Advanced Powder Technology, 29(9), (2018), 1977-1990. [Google Scholar]
  28. Zainal, N. A., Nazar, R., Naganthran, K., & Pop, I.: MHD mixed convection stagnation point flow of a hybrid nanofluid past a vertical flat plate with convective boundary condition, Chinese Journal of Physics, 66, (2020), 630-644. [CrossRef] [Google Scholar]
  29. Klazly, M. M., & Bognár, G.: CFD study for the flow behaviour of nanofluid flow over flat plate, INTERNATIONAL JOURNAL OF MECHANICS, 14,(2020), 49-57. [Google Scholar]
  30. Singh, A. K., Iyyappan, G., & Jaganathan, B.: Effect of Viscous Dissipation of Laminar Flow over a Flat Plate with Variable Properties, Advances in Fluid Dynamics, (2021), 619-626. [Google Scholar]
  31. Mair Khan, T. Salahuddin, Mohamed Altanji: A viscously dissipated Blasisus boundary layer flow with variable thermo-physical properties: An entropy generation study, International Communications in Heat and Mass Transfer, 131,(2022), 105873. [CrossRef] [Google Scholar]
  32. Watanabe, T.: Forced and free mixed convection boundary layer flow with uniform suction or injection on a vertical flat plate, Acta Mechanica, 89(1), (1991), 123-132. [CrossRef] [Google Scholar]
  33. Char, M. I.: Heat transfer of a continuous, stretching surface with suction or blowing, Journal of Mathematical Analysis and Applications, 135(2), (1988), 568-580. [CrossRef] [Google Scholar]
  34. Bachok, N., Ishak, A., & Pop, I.: Boundary layer flow over a moving surface in a nanofluid with suction or injection, Acta Mechanica Sinica, 28(1), (2012), 34-40. [CrossRef] [Google Scholar]
  35. Palanichamy, P.: Blasius Flow with Suction and Blowing, Global Journal of Pure and Applied Mathematics, 13(7), (2017), 2825-2835. [Google Scholar]
  36. Swapna, G., Kumar, L., Rana, P., Kumari, A., & Singh, B.: Finite element study of radiative double-diffusive mixed convection magneto-micropolar flow in a porous medium with chemical reaction and convective condition, Alexandria engineering journal, 57(1) , (2018), 107-120. [CrossRef] [Google Scholar]
  37. Aziz, A.: A similarity solution for laminar thermal boundary layer over a flat plate with a convective surface boundary condition, Communications in Nonlinear Science and Numerical Simulation, 14(4), (2009), 1064-1068. [CrossRef] [Google Scholar]
  38. Ishak, A.: Similarity solutions for flow and heat transfer over a permeable surface with convective boundary condition, Applied Mathematics and Computation, 217(2), (2010), 837-842. [CrossRef] [Google Scholar]
  39. Makinde, O. D., & Aziz, A.: MHD mixed convection from a vertical plate embedded in a porous medium with a convective boundary condition, International Journal of Thermal Sciences, 49(9), (2010), 1813-1820. [CrossRef] [Google Scholar]
  40. Rashad, A. M., Chamkha, A. J., & Modather, M.: Mixed convection boundary-layer flow past a horizontal circular cylinder embedded in a porous medium filled with a nanofluid under convective boundary condition, Computers & Fluids, 86, (2013), 380-388. [CrossRef] [Google Scholar]
  41. Ahmad, R., & Khan, W. A.: Numerical study of heat and mass transfer MHD viscous flow over a moving wedge in the presence of viscous dissipation and heat source/sink with convective boundary condition, Heat Transfer—Asian Research, 43(1), (2014), 17-38. [CrossRef] [Google Scholar]
  42. Jha BK, Samaila G.: Thermal radiation effect on boundary layer over a flat plate having convective surface boundary condition, SN Applied Sciences, 2(3), (2020), 1-8. [CrossRef] [Google Scholar]
  43. Tiwari, R. K., & Das, M. K.: Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids, International Journal of heat and Mass transfer, 50(9-10),(2007), 2002-2018. [CrossRef] [Google Scholar]
  44. Oztop, H. F., & Abu-Nada, E.: Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids, International journal of heat and fluid flow, 29(5), (2008), 1326-1336. [CrossRef] [Google Scholar]
  45. Ahmad, M. J., & Tiwari, G. N.: Solar radiation models—A review, International Journal of Energy Research, 35(4), (2011), 271-290. [CrossRef] [Google Scholar]
  46. Yacob, N. A., Ishak, A., & Pop, I.: Falkner–Skan problem for a static or moving wedge in nanofluids, International Journal of Thermal Sciences, 50(2), (2011), 133-139. [CrossRef] [Google Scholar]
  47. Devi, S. A., & Andrews, J.: Laminar boundary layer flow of nanofluid over a flat plate, Int. J. Appl. Math. Mech, 7(6), (2011), 52-71. [Google Scholar]
  48. Cortell, R.: Numerical solutions of the classical Blasius flat-plate problem, Applied Mathematics and Computation, 170(1), (2005), 706-710. [CrossRef] [Google Scholar]
  49. Howarth, L.: On the solution of the laminar boundary layer equations, Proceedings of the Royal Society of London. Series A-Mathematical and Physical Sciences, 164(919), (1938), 547-579. [Google Scholar]
  50. Reddy, J. N., Introduction to the finite element method, McGraw-Hill Education, (2019). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.