Issue |
E3S Web Conf.
Volume 592, 2024
International Scientific Conference Energy Management of Municipal Facilities and Environmental Technologies (EMMFT-2024)
|
|
---|---|---|
Article Number | 05010 | |
Number of page(s) | 11 | |
Section | Mining, Geology, Geodesy, and Environmental Monitoring | |
DOI | https://doi.org/10.1051/e3sconf/202459205010 | |
Published online | 20 November 2024 |
Study of crosshead-guided lubrication systems for hydraulic fracturing plunger pumps
Don State Technical University, 1, Gagarin sq., 344002, Rostov-on-Don, Russia
* Corresponding author: kireevso@yandex.ru
Efficient extraction of hard-to-recover hydrocarbon reserves requires impressive expenditures on the use of advanced technologies and energy-intensive equipment. Hydraulic fracturing technologies require the use of high-pressure pumps (105 and 138 MPa), and this determines the use of plunger pumps in these conditions. To relieve the radial load on the plunger seals, a crosshead layout of the drive part is used. The goal is to investigate crosshead (guide) load distribution throughout the crankcase and also the oil distribution in the crosshead-guide gap to find the most efficient design. The methods of simulation modeling of the kinematics of the crosshead and connecting rod group with the use of modal analysis were applied for the study. The analysis was performed taking into account the elastic properties of the crosshead, seal and connecting rod. The Reynolds-Stokes-Halerkin finite element method (R-SGFEM) with sliding boundary conditions was used to model and study hydrodynamic lubrication. A study was conducted for three types of oil channels on the crosshead: one longitudinal channel at the apex, one longitudinal channel and two transverse channels, one longitudinal channel and three transverse channels. Load distribution graphs were obtained for the contact area with respect to the oil-feeding hole in the guide. The obtained data make it possible to understand the nature of the crosshead sliding on the guide and evaluate the possibility of providing the hydrostatic mode in the friction knot at different types of the lubricant supply into the contact zone. The study showed one of the causes of increased wear of the bottom guide of the crosshead, which consists in insufficient non-drying ability of the lubricating layer and allowed to determine the parameters for further research and optimization of the node design.
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.